留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2014年  第42卷  第09期

显示方式:
摘要:
气化炉内固体颗粒微观结构特性对气流床气化过程中熔渣、粗渣和细渣的形成具有重要影响。基于多喷嘴对置式水煤浆气化实验,对典型工况(O/C原子比为1.0)下气化炉轴向不同位置的固体颗粒进行取样,利用氮气等温吸附法和扫描电子显微镜对颗粒孔隙结构和微观形态进行研究。结果表明,气化炉内固体颗粒典型形态为不规则多孔状和规则球状,喷嘴平面有少量致密性不规则颗粒和中空颗粒。从喷嘴平面沿气化炉轴向向下,随着气化反应的进行,颗粒表面愈加粗糙,孔隙结构愈加发达。颗粒吸附曲线属于Ⅱ型等温线,迟滞回线属于H3型回线,表明颗粒具有大量裂缝形孔和较连续的完整孔系统。比表面积和孔容积均随着与喷嘴平面距离的增加而增大,而平均孔径逐渐减小,在喷嘴平面附近变化幅度较大。孔结构以孔径小于10 nm的孔为主,随着气化反应的进行颗粒中小于10 nm的孔逐渐增多,而大于10 nm的孔分布状态变化不大。
摘要:
在加压固定床微分反应器上对霍林河褐煤焦(HLH)、神木烟煤焦(SM)和晋城无烟煤焦(JC)与水蒸气/氢气混合气的加压气化反应特性进行了研究。结果表明,氢气对煤焦水蒸气气化反应具有明显的抑制作用,其抑制作用大小分别随氢气分压、总压和煤阶的提高而增强,而随反应温度升高而减弱;有氢气存在和无氢气存在时煤焦水蒸气气化反应过程都能用相同的动力学模型描述,有氢气存在时煤焦水蒸气气化的最终碳转化率低于纯水蒸气气化的最终碳转化率;氢气对煤焦水蒸气气化反应的抑制机理与氢气的分压范围有关,当氢气分压很低时,氢气的抑制作用主要是由于氢气离解生成的氢原子占据煤焦表面活性位所致,而当氢气分压很高时,氢气的抑制作用主要是由于氧交换反应的逆反应加强所致。
摘要:
采用热重-差示量热扫描法(TG-DSC)测量了生物质和一次热解焦炭及不同转化率下半焦的比热容,建立了计算半焦比热容的数学模型并与实验测量结果进行了对比。结果表明,生物质样品和热解焦炭的比热容在60~200℃随温度升高而线性增大。生物质焦炭的比热容低于生物质样品的比热容,从60℃时的1.2 J/(g·K)增大到200℃附近的1.8~2.0 J/(g·K)。生物质半焦比热容随热解转化率的提高而降低。由半焦比热容数学模型计算得到的结果在接近150~200℃时与实验测定的半焦比热容数值基本一致。
摘要:
在加压固定床反应器中,考察了负载碳酸钾的府谷煤热解半焦和不同气化率的部分气化半焦对CO甲烷化反应的催化性能。结果表明,原煤热解半焦和脱灰煤热解半焦的甲烷化活性都很低,而负载10%(质量分数)碳酸钾的热解半焦甲烷化活性明显提高,甲烷收率可达30%。负载碳酸钾的热解半焦水蒸气气化反应速率与碳气化率呈“火山”型关系曲线,在碳气化率为22%时达到极大值。在气化反应速率较高时得到的部分气化半焦上,甲烷化反应速率较低。利用红外光谱对半焦官能团进行分析,发现在热解过程中,碳酸钾和煤发生反应形成C-O-K复合物,在1 100 cm-1附近出现特征振动峰,该峰的强度与碳气化反应速率成正比。不同气化率半焦经过甲烷化反应后,红外光谱谱图中C-O-K峰强度不同程度增大。
摘要:
利用高压热重结合傅里叶红外研究了大同烟煤在增压富氧燃烧过程中硫、氯和氟的释放行为,主要考察压力对其析出特性的影响。实验结果表明,压力的改变对煤中硫、氯和氟的迁移转化均有显著影响。随着压力的升高,黄铁矿硫向COS等中间产物的转化率逐渐增加,导致SO2的收率逐步上升,但在3 MPa时,燃煤SO2收率却有所降低。此外,压力升高后反应气氛中CO分压的增加促进了COS的生成,导致其收率逐渐上升。因为煤中有机氯析出和转化与挥发分的释放密切相关,所以高压下挥发分释放量的增加使得煤中有更多的有机氯析出并转化为HCl,而且压力升高后,挥发分燃烧速率和温度的升高促进了无机氟化物分解,HF生成量相应增加。此外,高压下水解反应的强化也提高了HF的收率。
摘要:
以天然石膏粉、膨润土(bentonite)和Fe(NO33·9H2O为原料,通过机械混合造粒法制备了钙基复合载氧体。在小型流化床反应器中,水蒸气作为气化-流化介质,研究了温度、活性组分含量及循环次数对复合载氧体反应活性的影响,同时考察了不同煤种化学链燃烧反应特性。实验结果表明,CaSO4含量为60%,Fe2O3为活性助剂的CaSO4-Fe2O3/ben(Ca-Fe/ben)载氧体平均磨损速率为0.089%/h。反应温度为900℃时,碳转化率达到95%所需的时间为20.8 min,CO2平均干基浓度为95.99%,表现高的反应活性。10次氧化/还原反应后,CO2平均干基浓度保持在80%,载氧体保持良好的循环反应活性。同时,实验发现高挥发分高灰分的煤种更适于煤的化学链燃烧,且CO2浓度均保持在90%以上。粒径分布曲线表明循环反应中载氧体表现强的抗磨损能力。
摘要:
针对煤粉锅炉掺烧污泥后污泥对混合燃料灰熔特性的影响行为,利用矿物三元相图、XRD等分析手段,研究了不同特性污泥(生活污泥、工业污泥)与煤掺混燃烧过程中不同矿物组分的相互作用机制及灰渣的灰熔融特性变化特征。结果表明,三元相图能够有效预测煤和污泥掺混后灰熔融温度的变化趋势;低含量的氧化铁形成低温共熔体以及透辉石、钙长石会降低煤和污泥混合后的灰熔融温度;而钙镁橄榄石、莫来石和单体形式存在的氧化铁能提高煤和污泥混合后的灰熔融温度。工业污泥中的高硫组分在混烧过程中易形成硫酸盐的低温共融体。生活污泥中磷对灰熔点的影响与氧化铝及碱金属的比例有关,当氧化铝的含量占主要成分时,磷的存在趋向于降低灰熔点,而当碱金属占主要成分时,磷的存在趋向于提高灰熔点。
摘要:
对不同使用时间的HZSM-5分子筛在线催化提质制取的生物油进行理化特性和成分分析,从生物油品质角度对HZSM-5的催化性能进行评价;并采用TG、BET、XRD、SEM和TEM等方法对失活的HZSM-5催化剂进行表征分析,探讨了HZSM-5催化提质生物油的失活机理,并进行再生研究。研究表明,HZSM-5分子筛可转化生物油中的酸类、醛类和酮类等"非期望"有机物,生成较多"期望"有机物,如酚类和芳烃类物质,降低生物油的氧含量及酸性,提高生物油的热值;HZSM-5使用80 min后,生物油品质明显变差,催化剂活性明显降低;失活催化剂上沉积的焦炭主要呈纤维状,同时,还存在少量石墨状焦炭,焦炭总量达14.12%,且使用过程中催化剂的比表面积和孔容均下降,晶粒的团聚现象加剧,结晶度下降;在催化提质过程中,在孔道内生成的石墨状焦炭及在表面形成的纤维状焦炭大量覆盖活性位点,使得催化剂失活。经550℃再生后,催化剂可恢复催化性能。
摘要:
以氢氧化钾、碳酸钠和碳酸氢钠为沉淀剂,采用共沉淀法制备3种铁酸铜催化剂,并对其水煤气变换活性和热稳定性进行了评价。测试发现,以氢氧化钾为沉淀剂制得的催化剂表现出优异的水煤气变换活性。通过X射线粉末衍射仪(XRD)、N2物理吸附(N2-physisorption)、H2-程序升温还原(H2-TPR)、CO2-程序升温脱附(CO2-TPD)和循环伏安法(CV)等技术手段研究了不同的沉淀剂对催化剂的微观结构和表面性质的影响。结果发现,氢氧化钾能有效促进CuFe2O4的生成、抑制CuO和CuFe2O4晶格的长大、促使CuO在催化剂表面的较好分散、增强催化剂的还原能力、增加弱碱性位点的数量。它们显著改善了催化剂的催化活性和热稳定性。
摘要:
用溶胶凝胶法制备了Mn-Ce/TiO2(用M表示)和Cu-Ce/TiO2(用C表示)催化剂,将M相、C相和V2O5-WO3(用V表示)用顺序浸渍法依次负载到堇青石蜂窝陶瓷载体(CC)上。用尿素选择性催化还原NOx(SCR)的转化率作为衡量指标对一系列的整体催化剂性能进行评价。催化剂的物理化学性能用N2吸附、CO2-TPD、NH3-TPD、XRD、XPS 和H2-TPR等进行表征。结果表明,当M相优先于C相负载到CC上时,在0.01%SO2和10%H2O存在的情况下,V/3C/3M/CC复合催化剂仍比C相或M相单独负载到堇青石上表现出较高的活性,并且微量的SO2有利于催化剂活性的提升。XRD分析结果表明,Cu-Ce负载到TiO2溶胶上有助于锐钛矿相的形成,Mn-Ce负载到TiO2上有助于金红石相的形成。比表面积只与M或C相的负载量有关而与负载顺序无关。M或C相能够增加催化剂表面不同强度的酸性位。H2-TPR研究结果表明,V和Cu或Mn之间的相互作用提高了V的还原能力,进而增加了耗氢量。由XPS分析可知,催化剂表面较高的V4+/V5+比值和大量化学吸附氧的存在有利于催化剂活性的提升。
摘要:
以铝柱撑黏土(Al-PILC)为载体采用旋蒸-浸渍法制备了铜、铁单组分催化剂(Cu/Al-PILC、Fe/Al-PILC)和铜铁复合氧化物催化剂(CuFe/Al-PILC),并测试其对NH3选择性催化还原NO反应(NH3-SCR)的催化性能。相比Cu/Al-PILC 和Fe/Al-PILC,CuFe/Al-PILC活性组分之间有较强的协同效应,显著提高了催化剂的脱硝性能。CuFe/Al-PILC在290~450℃的宽温区NO脱除效率保持90%以上,最高可达97%。此外,CuFe/Al-PILC有很好的抗水抗硫性能,催化活性不受反应气氛中水蒸气和SO2的影响。XRD、UV-vis、XPS和N2吸附脱附表征结果表明,CuFe/Al-PILC中活性组分相互作用生成CuFe2O4,有利于活性组分在载体表面分散,提高催化剂的比表面积和孔容;H2-TPR表征结果表明,CuFe/Al-PILC活性组分在载体表面生成的CuFe2O4改善了催化剂氧化还原性能,有利于NH3 对NO选择性的还原;NH3-TPD表征结果表明,CuFe/Al-PILC在较宽温区范围内对NH3都有很好的吸附,这有利于提高催化剂表面还原物种的浓度,从而保证催化剂在较宽温区范围内具有较好的NO脱除效率。
摘要:
采用浸渍法制备了以堇青石为基底、氧化铈为活性组分的整体式脱硝催化剂CeO2/TiO2/堇青石催化剂。通过与商业钒基催化剂(V2O5-WO3/TiO2/堇青石)的对比研究发现,CeO2/TiO2/堇青石催化剂表现出了优良的抗硫抗水性能,经过30 h抗硫抗水实验,CeO2/TiO2/堇青石催化剂的氮氧化物转化率仍能保持在70%以上,仅下降了5%。BET、XRD、FT-IR和TG表征结果表明,在含硫含水气氛中反应时,CeO2/TiO2/堇青石和V2O5-WO3/TiO2/堇青石催化剂表面均有硫酸铵盐的生成,且前者的生成量明显低于后者。NH3-DRIFT分析结果表明,在含硫含水气氛中两种催化剂表面Brønsted酸性都被增强,而Lewis酸性有所减弱。进一步的XPS分析结果表明,烟气中的SO2+H2O会使催化剂表面Ce4+向Ce3+发生转化,从而导致化学吸附氧含量增加,这是CeO2/TiO2/堇青石催化剂具有优良抗硫抗水性能的重要原因。
摘要:
合成了ZSM-5、ZSM-22、EU-1、MCM-22和ITQ-13具有十元环孔道结构的5种分子筛,研究了分子筛结构、酸性分布等因素对其在甲醇芳构化反应中催化性能的影响。研究表明,不同结构分子筛的形貌、酸性及孔径均存在较大差异,进而影响了其在甲醇制芳烃反应中的催化活性和稳定性。研究的5种分子筛中,ZSM-5表现出最佳的芳构化活性,芳烃收率达34.8%,MCM-22芳烃收率约为21.9%,而其他3种结构的分子筛催化剂基本未表现出甲醇芳构化活性。通过添加具有芳构化性能的Ga物种对ZSM-5和MCM-22进行改性,可显著提升芳烃收率,Ga/ZSM-5上芳烃收率达到40.8%,Ga/MCM-22上芳烃收率可提高到27.1%。另外,采用TG/DTA、GC等方法研究了失活催化剂的积炭情况,发现分子筛结构对积炭量、积炭组成及积炭分布存在显著影响。
摘要:
采用Na2CO3溶液对ZSM-5分子筛进行碱处理,考察了处理温度和处理时间对ZSM-5分子筛结构特征和物化性能的影响。利用XRD、N2吸附-脱附、XRF、SEM及NH3-TPD表征对处理前后样品进行分析。以正丁硫醇和异戊二烯组成的模型化合物为原料,对碱处理后含微-介孔HZSM-5分子筛制得的Ni-Mo/HZSM-5催化剂进行硫醚化活性评价。结果表明,Na2CO3溶液处理没有破坏原分子筛晶体形貌,保持微孔结构的同时,适当的提高处理温度和延长处理时间有利于ZSM-5分子筛比表面积、外比表面积、介孔孔容和平均孔径的增大,并调节了酸性质。但过长的处理时间并不利于介孔的生成和酸性的调变。经90℃的Na2CO3溶液处理5 h得到催化剂表现较高硫醚化活性,正丁硫醇和异戊二烯转化率分别可达92.36%和97.33%。由此,Na2CO3溶液处理可提高催化剂硫醚化活性,且改性过程温和可控。
摘要:
以丁烷液化气为燃料,以固体氧化物燃料电池为电源,可以进行全天候的充电,是未来理想的充电模式。研究了以丁烷为燃料的可以便携的直接火焰燃料电池堆。该电池结构和电性能分别用扫描电子显微镜SEM和电化学工作站进行了表征。该电池堆由3片以Ni/YSZ为阳极支撑形的单电池构成。该电池堆操作开路电压为2.1 V,最大输出功率为0.24 W,可带动小风扇连续运行超过4 h。运行4 h后电池阳极没有积炭发生,说明该电池可以连续运行多个小时,可用作便携充电电源。
摘要:
采用固定床微分反应器,在常压、450~500℃、甲烷体积分数10%~35%条件下,进行铜基催化剂上甲烷催化燃烧动力学特性研究。研究表明,甲烷分压对反应速率影响显著,而氧气分压的影响可以忽略。采用最小二乘法进行动力学模型参数估计,建立的反应动力学模型为-rCH4=1.61×107×e-108 000/RT×pCH40.5。检验结果表明,所建模型与实验数据良好相容,是适宜和可信的。根据实验结果推断甲烷催化燃烧分两步进行,首先氧气快速与铜基催化剂上活性空位点反应,形成吸附氧气分子;随后吸附氧气分子和甲烷分子反应,生成二氧化碳和水。
摘要:
以贵金属改性的钙钛矿为活性组分,通过等体积浸渍法制备了Pd/La0.8Ce0.2MnO3/ZSM-5催化剂,并采用XRD、BET、SEM和H2-TPR等技术对催化剂进行了表征。在固定床反应器上,对Pd/La0.8Ce0.2MnO3/ZSM-5催化剂上的甲苯为目标污染物的催化燃烧进行了研究,考察了焙烧温度、负载量及ZSM-5的性质对其催化活性的影响。结果表明,所得到Pd/La0.8Ce0.2MnO3催化剂仍保持钙钛矿型结构,Pd均匀的分布在催化剂表面,有利于催化剂活性的提高。当ZSM-5硅铝原子比为25、La0.8Ce0.2MnO3负载量为20%、焙烧温度为750℃时,La0.8Ce0.2MnO3/ZSM-5上甲苯的起燃温度和完全转化温度分别为200和279℃;加入0.3%的Pd后,Pd/La0.8Ce0.2MnO3/ZSM-5的催化活性明显提高,甲苯起燃温度下降了90℃,完全转化温度可低至230℃。