留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2015年  第43卷  第11期

显示方式:
摘要:
为使煤直接液化残渣得到清洁高效再利用,采用常压固定床反应器,对神东煤直接液化残渣与呼伦贝尔褐煤共热解制取的半焦进行了研究。结合扫描电镜、N2-吸附、X射线衍射、拉曼光谱以及热重分析发现,共热解过程中存在的软化熔融现象导致液化残渣与褐煤相互黏结,共热解半焦比表面积与孔体积减小,半焦结构有序化程度增加。与褐煤单独热解半焦相比,共热解半焦CO2气化反应性能低。
摘要:
利用高频电炉对神府煤进行快速热解,研究了不同热解温度和停留时间下,固相和气相产物的性质。结果表明,煤焦的失重率及真密度随温度升高和时间的延长而增长。红外光谱结果表明,热解过程中,煤中含氢/含氧官能团分解,生成H2、CO、CO2、CH4等气体,并且其分解程度随温度的升高和时间的延长而加深。气相产物中H2和CO的释放量随温度的升高和时间的延长而增加,而CO2和CH4存在释放量的峰值。气相产物随温度的升高和时间的延长而增多,导致高温煤焦出现大量的孔隙和裂缝。
摘要:
以五彩湾煤镜质组、惰质组为研究对象,建立两种不同的体系,镜质组与惰质组无相互作用体系(A)和相互作用体系(B)。利用热重技术(TG)和傅里叶变换红外技术(FT-IR),将两体系的热解固体产物进行红外分析。结果表明,在300~450℃,体系B的脂肪氢含量高于体系A,表明镜质组与惰质组之间发生了烷基自由基转移反应,芳氢的含量也是体系B多于体系A,这说明镜质组与惰质组之间同时发生了芳构化作用,随温度升高,镜质组生成少量氢自由基与惰质组发生侧链取代反应;在500~700℃,体系B的脂肪氢含量和芳氢含量均低于体系A,表明此时镜质组与惰质组之间发生缩聚反应及缩合反应;750~800℃时,脂肪氢和芳香氢含量均为体系B大于体系A,说明体系B中,镜质组产生较多的氢自由基与惰质组大分子芳香结构发生氢化反应,同时与惰质组发生侧链取代反应;850~900℃时,镜质组与惰质组之间进一步发生多环芳香缩合反应。
摘要:
主要研究添加助熔剂或配煤降低晋城无烟煤的灰熔融温度。通过X射线衍射(XRD)、热力学计算以及灰熔点测试等手段,研究混煤灰熔融特性及其在变形温度时的矿物学特征,解析其结渣特点。结果表明,原煤灰含量越低,混煤灰熔点降低效果越明显。在配煤添加量为20%时,低灰煤C灰熔点降低趋势最明显,对于高灰煤G,则为30%;助熔剂K对C的灰熔点降低效果比对G的更明显。在混煤灰的变形温度处,出现了长石类矿物质。长石类矿物含量的上升和莫来石含量的下降促使灰熔点快速降低。热力学计算表明,高温下,煤灰中液相物质的产生伴随着钙长石和石英含量的快速下降以及莫来石含量的缓慢降低。钙长石参与了煤灰中液相物质的产生。能够与钙长石作用形成低熔点共熔体的物质的含量决定了它的助熔效果。
摘要:
以碳酸钾为催化剂,通过高温热台原位研究气化阶段神府/遵义煤焦与催化剂的交互作用,采用热重分析仪,考察气化温度(750~950℃)、催化剂负载量(钾离子负载量2.2%、4.4%、6.6%(质量分数))对煤焦气化反应性的影响。结果表明,K2CO3有利于促进神府/遵义煤热解过程孔隙结构的发展。气化温度低于碳酸钾熔点时,大部分煤焦颗粒与CO2的反应以颗粒收缩形式进行,当气化温度高于碳酸钾熔点时,对于神府煤焦,随着碳骨架快速消耗,在反应后期可观察到明显的熔融态钾催化剂扩散现象;而对于遵义煤焦,其碳骨架稳定消耗缓慢,大部分熔融态钾催化剂存在于煤焦表面。神府/遵义煤焦气化反应活性随碳酸钾负载量的增加而提高。钾催化剂对神府煤焦的催化作用随气化温度的升高先增强后减弱,转折温度点接近碳酸钾熔点,原因为熔融态钾催化剂流动性好,造成部分孔隙结构堵塞,导致钾催化剂催化作用减弱。
摘要:
在固定床加氢微反装置上,考察了邻甲酚对煤焦油组分喹啉加氢脱氮(HDN)反应、二苯并噻吩(DBT)加氢脱硫(HDS)反应以及1-甲基萘加氢饱和(HDA)反应的影响。结果表明,邻甲酚的加入对喹啉的HDN反应、DBT的HDS反应、1-甲基萘的HDA反应有着较强的抑制作用,且邻甲酚的含量越多,这种抑制作用越明显,这是由于邻甲酚与喹啉、DBT、1-甲基萘在活性位点上的竞争吸附造成的。邻甲酚的加入对产物的选择性影响较弱,反应前后产物的选择性变化很小。由于空间位阻效应,1-甲基萘的加氢优先发生在不带侧链的芳环上。
摘要:
β-O-4连接是木质素主体结构单元之间的主要联结方式。采用密度泛函理论方法B3LYP,在6-31G (d, p)基组水平上,对β-O-4型木质素二聚体模型化合物(1-愈创木基-2-(2-甲氧基苯氧基)-1,3丙二醇)的热解反应机理进行了研究。提出了三种热解反应途径:Cβ-O键均裂的后续反应、Cα-Cβ键均裂的后续反应以及协同反应。对各种反应的反应物、产物、中间体和过渡态的结构进行了能量梯度全优化,计算了各热解反应途径的标准动力学参数。分析了各种主要热解产物的形成演化机理以及热解过程中温度对热解机理的影响。计算结果表明,Cβ-O键的均裂反应和协同反应路径(1)和(3)是木质素二聚体热解过程中主要的反应路径,而Cα-Cβ键的均裂反应和协同反应路径(2)和(5)是主要的竞争反应路径;热解的主要产物是酚类化合物如愈创木酚、1-愈创木基-3-羟基丙酮、3-愈创木基-3-羟基丙醛、愈创木基甲醛和乙烯等。在热解低温阶段协同反应是热解过程中的主要反应形式,而在高温阶段自由基均裂反应是热解过程的主要反应形式。
摘要:
在固定床微反实验装置中考察了不同模型氮化物对邻二甲苯催化裂化反应的影响,N元素的添加量为4000μg/g,催化剂的活性组分为USY分子筛。结果表明,吡啶、喹啉导致邻二甲苯的转化率有所下降。吖啶对焦炭的贡献,与其在催化剂上的吸附有关;同时吖啶诱导邻二甲苯生成更多的焦炭,并伴随氢气的大量生成,使邻二甲苯的加氢饱和反应与开环裂化反应得到促进。与空白实验相比,添加吖啶后,邻二甲苯的转化率略有上升,干气、液化气的收率显著提高。
摘要:
在区分氢负离子转移反应与氢转移反应、非选择性氢转移反应与总的氢转移反应的情况下,通过合成物性相近但酸性不同的氧化铝,用以作为裂化催化剂基质材料,在固定床反应器上考察了催化裂化过程,基质酸性位类型及基质表面Lewis及Brönsted酸性位接触顺序对小分子烯烃(丙烯、丁烯)收率的影响。结果表明,催化裂化生成小分子烯烃过程中,分子筛与基质所呈现出的反应特点存在较大的区别,前者活性虽高,但总的氢转移反应活性过强。基质材料裂化活性虽低但其表面以氢负离子转移反应为主,反应路径角度更有利于小分子烯烃收率的提高。另外,基质表面存在Brönsted酸性位,或原料油首先与基质表面Lewis酸性位相接触再与Brönsted酸性位反应的预裂化过程,会在促进裂化反应发生的同时抑制总的氢转移反应,更有利于小分子烯烃收率的提高。
摘要:
以不同载体负载NiO制备了甲烷干重整催化剂并对所制备的催化剂采用等温氮气吸附、XRD、H2-TPR、H2化学吸附等进行了表征。结果表明,载体性质对NiO的存在状态影响较大。SiO2、TiO2以及ZrO2与NiO的相互作用较弱,催化剂易于被还原活化,而正是由于其与NiO的弱相互作用,导致活性金属在反应过程中易迁移聚集而失活。Al2O3和MgO均与NiO有强相互作用,易分别生成NiAl2O4尖晶石和NiO-MgO固溶体,导致其难以被还原活化。经MgO改性的Al2O3载体不仅具有较大的比表面积,而且与NiO的相互作用强度适中,这有利于NiO的分散和稳定,以其为载体制备的催化剂在较高空速下表现出优异的催化反应活性和稳定性,催化剂连续稳定运行100h不失活。
摘要:
采用共沉淀法制备了CuO/ZnO/CeO2-ZrO2甲醇水蒸气重整制氢催化剂,探讨了前驱体和沉淀剂浓度对催化剂性能的影响,并采用BET、XRD、H2-TPR和XPS等手段对催化剂进行了表征。结果表明,前驱体和沉淀剂浓度对催化剂的结构和性能影响很大,当前驱体浓度为0.1mol/L,沉淀剂浓度为0.5mol/L时,所得催化剂CO选择性最小,催化活性最佳。在360h稳定实验中,甲醇最高转化率达100%,重整尾气中H2含量保持在74.5%以上,CO含量低于0.8%,催化剂稳定性良好。
摘要:
在高压釜中采用金属氧化物和盐作为催化剂由尿素与甲醇合成碳酸二甲酯。结果表明,含有结晶水的金属盐比无结晶水金属盐和金属氧化物具有更好的催化活性。采用羟基化合物与硝酸锌组成的二元催化剂,其催化活性显著高于单一催化剂;羟基与硝酸锌之间具有协同催化作用。其中,硝酸锌与SiO2组成的二元催化剂活性最高;硝酸锌与SiO2的质量比为2时,DMC收率可达4.5%。
摘要:
以三甲基氯硅烷为硅烷化试剂,对硅胶进行不同程度硅烷化预处理,采用浸渍法制备了其负载的Rh-Mn-Li催化剂,用于CO加氢制C2含氧化合物的反应,并运用红外光谱、N2吸附-脱附法、C含量测定、透射电镜、H2程序升温还原和程序升温表面反应等手段对载体和催化剂进行了表征。结果表明,制得的不同硅烷化程度硅胶织构性质变化不大,它们负载的催化剂上Rh平均粒径均在3nm左右,硅烷化对催化剂吸附CO的形态和Rh的还原性能的影响均很小,但随着载体硅烷化程度的提高,催化剂上Rh解离CO的能力增加,因而其活性逐渐增加,且不影响C2含氧化合物的选择性。
摘要:
以共沉淀法制备FeAl母体,采用浸渍法添加Zn、K和Cu助剂制成催化剂,利用低温N2物理吸附、XRD、H2-TPR等手段对FeAl母体和催化剂进行表征,并用固定床反应器考察它们的CO2加氢反应性能。XRD结果表明,加入Al助剂、并采用无水乙醇洗涤沉淀能促进酌-Fe2O3晶相生成,其中,Al2O3/Fe2O3质量比为10%的母体具有最强的酌-Fe2O3衍射峰;加入Al使得母体中的a-Fe2O3晶粒粒径变小,引起比表面积明显增大;浸渍助剂过程没有改变上述两种效应。母体比表面积增大提高了助剂Cu的分散度,促进了催化剂还原,但酌-Fe2O3晶相的生成才是催化剂的CO2加氢反应活性被提高的主要原因。
摘要:
采用共沉淀法制备TiO2-SnO2固溶体,浸渍法负载CeO2得到一系列xCeO2/TiO2-SnO2负载型催化剂,在模拟NH3选择性催化还原NOx(NH3-SCR)反应条件下考察催化剂低温脱硝活性。通过X射线衍射(XRD)、比表面积测定(BET)、程序升温还原(H2-TPR)、程序升温脱附(NH3-TPD)、高分辨率透射电子显微镜(HRTEM)、原位漫反射傅里叶变换红外光谱(in situ DRIFTS)等表征技术,研究了氧化铈负载后催化剂的微观结构、表面物种的存在状态、表面酸位等表面性质及NH3吸附特性。结果表明,Ce:Ti物质的量比为0.1时,催化剂催化脱硝反应活性最高,同时具有较宽的温度窗口(250~300℃)和热稳定性;铈的过量负载会导致催化剂比表面积减小、活性窗口变窄,同时其氧化还原能力和NH3吸附能力也减弱。NH3-TPD结果显示,CeO2的负载导致催化剂NH3在弱酸及中等酸位的吸附显著增强,与催化剂NH3-SCR最佳反应物温度降低有关。in situ DRIFTS表明,xCeO2/TiO2-SnO2催化剂的Lewis酸位和Brønsted酸位强度均明显增强,同时,在1657~1666cm-1处出现新的Brønsted酸位,参与SCR反应的主要物质是NH4+分子。
摘要:
采用水泥修饰赤铁矿来提高载氧体的反应活性。实验在1kWth串行流化床上进行,研究了添加水泥对污泥化学链燃烧特性的影响,考察其长期运行的物化性能。结果表明,在实验工况下,赤铁矿添加水泥后,出口的未燃气体浓度明显下降。燃料反应器温度低于870℃时,水泥的添加使污泥的碳转化率和燃烧效率显著升高。在10h长期运行后,一部分污泥灰沉积在载氧体表面。虽然在反应过程中部分的Fe2O3被深度还原,但在长期运行中未出现流化问题和烧结现象。