留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2009年  第37卷  第01期

显示方式:
摘要:
选取贵州省六枝(LZ)、遵义(ZY)两不同矿区的高汞高硫煤为研究对象,对煤样进行煤浮沉、逐级化学萃取等实验,利用低温灰化(LTA)和X射线衍射(XRD)等手段,分析研究煤中汞和硫存在形式和两种元素之间的相关性。结果表明,在LZ煤中,硫主要以黄铁矿硫的形式存在,汞主要赋存于黄铁矿中,煤中硫和汞有很好的相关性;在ZY煤中,硫主要以有机硫的形式存在,汞主要赋存于黏土矿中,汞与硫不存在相关性。
摘要:
以水蒸气作为气化剂,在固定床上考察了脱碱金属煤外加NaCl 和NaAc 900 ℃快速热解煤焦在900 ℃和950 ℃下常压气化过程中钠的形态变迁以及挥发析出规律。研究结果表明,外加NaCl的浓度较低时气化后一部分水溶态和酸不溶态的Na向水不溶但酸溶态Na变迁,当外加NaCl的浓度较高时,所有的Na在气化中挥发。外加NaAc的煤焦中的Na在气化过程中大部分挥发到气相,且气化温度和添加的浓度对Na的挥发行为变化影响均较小。
摘要:
The catalytic effects of different catalysts, i.e., 3% Ca, 5%Na-BL, and 3% Ca+5% Na-BL catalyst, on carbon conversion, gasification reaction rate constant, activation energy, and relative amount of harmful sulfur containing gases, were investigated by thermogravimetry in steam gasification under temperature 700℃ to 900℃ at ambient pressure for two Pakistani Lakhra (LKH) and Thar (THR) lignite chars. High carbon conversion can be obtained by direct gasification of both LKH and THR chars, but the gasification rate became much fast using BL catalyst. THR char with high ash content was easy to form some complex silicates during BL catalytic gasification, leading to a lower conversion than that of LKH char with low ash content. SO2 and H2S as sulfurcontaining gases produced by char and BL itself in steam gasification can be captured by the existence of Ca mixed with BL, which is more effective at temperatures less than 900℃. The shrinking core model (SCM) can be considered as a better choice to correlate the relations between conversion and time and to estimate the reaction rate constant (k) under different temperatures. The reaction activation energy (Ea) and preexponential factor (A) were predicted based on Arrhenius equation. The reaction activation energy of 44.7kJ/mol and 59.6kJ/mol for LKH chars with BL+Ca and BL catalysts were much lower than 114.6kJ/mol and 100.8kJ/mol for THR chars with the same catalysts, respectively. They were also lower than 161.2kJ/mol for LKH char and 124.8kJ/mol for THR char without catalyst.
摘要:
利用高温滴管炉在1000℃~1400℃考察了彬县烟煤在高温快速热解过程中失重的变化,同时比较了埃塞俄比亚褐煤和晋城无烟煤的热解规律。结果表明,热解失重率随温度的升高而增加,而且各种煤种的最大失重率在高温下大于工业分析的失重率。对于不同变质程度的煤种其热解特性也不相同,较低的热解温度对高阶煤的影响较小。彬县原煤经过热解后比表面积增加,且随着热解温度的提高而增大,当热解温度超过灰熔点时,总比表面积降低。通过数据回归,得到了三种煤的失重率和热解温度的关联式。
摘要:
采用阴离子表面活性剂萘磺酸钠甲醛缩合物、聚羧酸钠作为分散剂,考察了不同污泥用量时污泥煤浆的成浆性能。结果表明,当污泥(干基)添加量为煤质量的4%时,成浆浓度超过60%,随着污泥用量的提高,污泥煤浆的成浆浓度降低。污泥加入后,浆体的稳定性增强,污泥比例越高,产生沉淀的时间延长。当污泥(干基)添加量为煤质量的4%时,产生沉淀的时间超过160h,与使用稳定剂效果相当。使用不同添加剂制备的污泥煤浆均呈假塑性。污泥疏松的絮状结构,蜂窝状的外表面,强大的吸水性是造成污泥煤浆成浆浓度下降,稳定性增加的主要原因。
摘要:
焦炭颗粒气化反应属于典型的非催化气固反应,固体结构会随着反应发生变化,颗粒的气化模型包含了体现固体颗粒表面积变化的结构因子。建立了具体的焦炭颗粒与二氧化碳气化过程的扩散反应模型,并将研究的内容限定在动力学控制区域。该模型的特点在于其反应速率项采用了形式简单的结构因子,模型结果与随机孔模型对比后显示了很好的精确性。利用该模型考察了不同初始孔隙率的焦炭颗粒的转化率变化特性以及固定初始孔隙率下,气化温度和气化剂分压对焦炭颗粒气化的影响。
摘要:
分别以水蒸气/惰性气混合气、水蒸气/氢气混合气作为气化剂,在常压和875℃~950℃下,采用热天平对1200℃快速热解神府煤焦的气化反应特性进行了研究,并考察了气化过程中煤焦结构的变化及其对气化反应的影响。实验发现,煤焦在水蒸气/氢气作为气化剂条件下的气化反应过程可分为两个阶段,首先是反应急剧进行的阶段,然后是反应速率趋于稳定的阶段,且反应速率接近于石墨的反应速率。该现象与煤的化学结构有关,第一阶段气化剂与活泼性物质碳氢支链、含氧官能团的反应,第二阶段气化剂与芳香碳的反应;煤焦在水蒸气/氢气气氛下,气化过程中的碳难以转化完全。神府煤焦的SEM表明,煤焦表面有大量的裂缝、孔隙、褶皱、及碎块。碎块表面光滑,这些物质覆盖了内部裂缝与孔隙。煤焦和水蒸气/氢气气化残焦(碳转化率68%)由于气化反应,其碎块减少,表面的大孔暴露出来。比较两种气化剂条件下的气化反应过程发现,水蒸气/惰性气气化反应速率随碳转化率的增加而缓慢均匀地下降;水蒸气/氢气气化反应速率随碳转化率增加先迅速降低,而后较缓慢降低。
摘要:
利用综合热重分析仪分别研究了K2CO3、Fe2O3对褐煤、烟煤、无烟煤、石墨等不同燃料的催化燃烧反应性的影响。结果表明,催化剂种类、添加量、粒径和燃料的变质程度对催化燃烧具有一定的影响;向无烟煤中加入K2CO3、Fe2O3两种催化剂,无烟煤的燃点由458℃分别降为319℃、405℃,燃烧速率由11.94%/min分别提高到26.40%/min、17.66%/min。K2CO3、Fe2O3对褐煤和烟煤的燃点没有明显的降低作用,但是对无烟煤和石墨燃点有明显的降低作用,且随着煤变质程度的增加,燃点降低幅度增大。由于引起燃点和燃速变化的原因不同,所以加入催化剂后造成燃点和燃速的变化也不同。
摘要:
生物油因水分含量高和呈酸性未能作为高品位能源直接规模化应用。利用分子蒸馏技术将生物油水分与酸性组分作为整体对象进行分离,既得到生物油酸性组分富集馏分,又获得了水分含量低、酸性较弱与热值较高的精制生物油Ⅰ(蒸馏重质馏分)与精制生物油Ⅱ(常温冷凝馏分)。同时,具体考察了精制前后生物油的pH值、热值和水分等参数的变化规律。研究表明,生物油的水分与酸性组分得到有效分离,精制生物油Ⅰ和Ⅱ的低级羧酸含量从原始生物油的18.85%分别降低至0.96%和2.2%
摘要:
利用HZSM-5型分子筛作为催化剂,在250℃~350℃、0.01MPa~0.04MPa的条件下,对生物柴油的主要组分油酸甲酯、棕榈酸甲酯、硬酯酸甲酯、亚油酸甲酯、月桂酸甲酯进行催化改性,以达到降低生物柴油冷滤点(CFPP)的目的。实验研究了反应温度和反应真空度对各脂肪酸甲酯产物的冷滤点、结炭率、碘值的影响,以该实验数据为依据,将动物油经过酯交换制备的生物柴油(AFE)进行催化改性。结果表明,在300℃~350℃,对饱和脂肪酸甲酯改性有很好的降凝效果,产物碘值升高;油酸甲酯通过改性,也取得了很好的降凝效果,产物碘值下降,在该反应条件下改性饱和脂肪酸甲酯和油酸甲酯催化剂的结炭率保持在5%以下;而亚油酸甲酯仅在350℃时改性才有降凝效果,且结炭率在10%以上。生物柴油(AFE)催化改性达到最佳降凝效果的条件为300℃~325℃,0.01MPa,改性后的的酸值小于0.6mg/g,冷滤点下降了19℃,碘值(I.V)为44.32g/100g,运动黏度(μt)为4.397mm2/s,并且催化剂结炭率保持在5%以下。
摘要:
对FCC柴油在浆态床柴油加氢催化剂SP25上的加氢工艺条件进行了优化,并考察了加氢脱硫(HDS)和加氢脱氮(HDN)动力学。结果表明,提高反应温度、提高反应压力、增加催化剂的加入量、延长反应时间都能提高催化剂的加氢精制活性,最佳的FCC柴油浆态床加氢工艺条件为,温度350℃、压力6MPa、催化剂加入量6%、反应时间2h。催化剂循环使用性能的考察结果表明,SP25催化剂具有良好的活性稳定性。动力学研究结果表明,FCC柴油的加氢脱硫反应过程可以分为两个阶段。第一阶段为较易脱除的苯并噻吩类(BTs)硫化物的加氢脱硫反应,反应活化能为70.00kJ/mol;第二阶段为较难脱除的二苯并噻吩类(DBTs)硫化物的加氢脱硫反应,反应活化能为85.65kJ/mol。FCC柴油HDN反应的活化能为79.91kJ/mol。烷基取代的二苯并噻吩类硫化物(特别是DMDBTs)是加氢精制反应中最难脱除的含杂原子(S或N)烃类化合物。
摘要:
利用提升管中试实验装置,研究了催化汽油二次裂化制丙烯过程中热裂化、氢转移反应的特点和影响因素,给出了不同反应条件对丙烯选择性的影响,考察了丙烯选择性最大点处热裂化反应、氢转移反应的变化。研究结果表明,采用适当的反应温度和剂油比以及缩短反应时间能有效抑制热裂化反应和氢转移反应的发生,提高丙烯的选择性。
摘要:
采用混胶法和机械混合等方法制备了Pd质量分数为1%的Pd/γ-Al2O3-TiO2催化剂,并对其催化活性、影响条件进行了考察。结果说明,由混胶法制备的Pd/γ-Al2O3-TiO2催化剂对乙醇和乙醛的完全氧化表现出优异的催化性能,其活性明显高于单一载体催化剂Pd/TiO2和Pd/Al2O3,150℃时乙醇和乙醛的转化率分别达到98.9%和98.5%。在较宽温度范围内和高空速条件下表现出良好的稳定性。同时运用XRD、TEM和FT-IR等技术对催化剂进行了表征。结果表明,在Pd/γ-Al2O3-TiO2催化剂中Al2O3与TiO2之间存在着较强的相互作用,使γ-Al2O3-TiO2的比表面积和孔容积均调变到一个适中的数值,同时在催化剂表面Al2O3参与形成了有利于其催化活性的表面结构。
摘要:
将无机盐K3PO4、K2HPO4和KH2PO4作为活化剂,分别添加于氨基乙酸盐溶液中,形成CO2活化吸收剂,采用膜接触器再生循环装置,评价和比较了氨基乙酸盐和活化吸收剂捕集CO2的性能,研究了活化剂的浓度、气液流速等因素对总体积传质系数、传质通量和捕集率的影响。结果表明,磷酸盐活化剂在氨基乙酸盐吸收剂中,对CO2的捕集均产生影响,活化效应存在PO43->HPO42->H2PO4的规律;添加少量活化剂的作用比添加较多量的活化作用大;活化吸收剂的捕集率明显大于非活化吸收剂;膜吸收流体力学状态的改变,能够改善膜接触器传质性能,增大传质通量,但增大的程度有限。
摘要:
采用共沉淀法制备系列Mn-Mg-Al-O水滑石前驱体,经500℃焙烧制成复合氧化物Mn-Mg-Al-O催化剂,并用XRD方法进行了表征。恒温储存实验研究了催化剂氧化NO和储存NOx的性能,NOx-TPD考察了储存的NOx脱附情况。结果表明,Mn在前驱体中高度分散;焙烧后,Mg2MnO4是主要的活性组分,Mn能够催化NO的氧化反应,且有一定的NOx储存能力,Mg是主要的储存组分,将NOx以硝酸盐的形式储存起来;硝酸盐在氮气气氛中300℃~600℃下分解,释放出NOx。不同含量的SO2均使催化剂NOx储存能力降低。
摘要:
采用乙醚萃取法、浸渍法制备了具有吸附-分解NOx功能的多酸催化新体系,并对其进行了IR、XRD、TEM表征,在固定床催化反应器中考察了体系对NOx的吸附与分解性能。结果表明,钨系杂多酸优于钼系,H3PMo12-xWxO40(x=1、3、6、12)随着取代钼的钨原子数目增多,对NOx的吸附能力增强;二氧化钛、碳纳米管均为磷钨酸(HPW)的优良载体,后者对体系有明显的增效作用;TiO2经500℃煅烧后,以磷钨酸水溶液为浸渍剂,HPW负载量为20%时,制得的HPW/TiO2体系的脱硝性能最佳,对NOx的吸附率可达62.8%;混酸(VHNO3VH2SO4=1∶3)能在碳纳米管上引入含氧基团使其在水中的分散性能增强,以水为浸渍溶剂、混酸改性后的碳纳米管为载体制得的HPW/CNT催化体系优于乙醇为浸渍溶剂制备的该催化体系,当HPW负载量为70%时,前者对NOx的吸附率可达73.5%。通过GC-MS检测确认了吸附质催化分解为N2的有效性。
摘要:
对活性炭载氧化铜和氧化铈(Cu-Ce/AC)吸附催化剂在连续吸附-催化氧化苯酚循环过程中的催化氧化活性和失活原因进行了研究。结果表明,Cu-Ce/AC的苯酚吸附性能和催化氧化活性随着吸附催化氧化循环次数的增加而逐渐降低,经5次循环后,苯酚的初始氧化温度提高约25℃。通过对使用过的CuCe/ACs进行XPS、ICP分析, 发现Ce和Cu的流失较小,苯酚残留物覆盖表面Ce和Cu是苯酚催化氧化活性降低的主要原因,残留物主要含有C—O—C和C—OH等官能团。
摘要:
以石油焦为原料、KOH为主活化剂,在低活化比mKOHmC=2∶1下制备吸附剂,考察了活化助剂KNO3、NaNO3、Mg(NO3)2、Ni(NO3)2和HJ对吸附剂储气性能的影响,对活化助剂提高吸附剂性能的机理进行了分析。结果表明,活化物料中加入适量助剂KNO3、Mg(NO3)2、Ni(NO3)2或HJ能显著提高吸附剂性能,HJ与Mg(NO3)2、Ni(NO3)2协同活化的效果最好。其中,Mg(NO3)2、HJ加入量均为10 %(助剂与石油焦质量分数)下制备的吸附剂样品在25℃、3.5MPa下对甲烷质量吸附量达0.143,有效体积释放量达117.1,性能超过活化比mKOHmC=3∶1、无助剂下制备的吸附剂。
摘要:
采用自旋极化的密度泛函理论(DFT)对正交与六方的Fe2C晶体体相与表面性质进行了研究,计算了晶胞的聚合能、磁矩以及低指数晶面的表面能。研究结果表明,两种晶型Fe2C 的磁性质相似,但正交堆积的Fe2C比六方堆积的Fe2C更稳定。正交晶系Fe2C低指数晶面的稳定性以 (011) > (110) > (100) > (101) > (001) 顺序降低。对一系列碳化程度不同的碳化铁最稳定表面(Fe2C(011)、Fe3C(001)和Fe4C(100))表面能的比较显示,碳化铁表面的相对稳定性与碳化度非线性相关。另外,与面心立方(BCC)铁最稳定表面(110)相比,Fe2C、Fe3C及Fe4C晶体最稳定表面具有较低的表面能,表明铁表面碳化在热力学上是有利的。
摘要:
在强碱性条件下,通过加入辅助模板剂HAcac,制备得到高Mo掺杂的MoSiOx介孔复合材料。XRD、N2吸附脱附、ICPAES、PyFTIR表征结果表明,MoSiOx具有较规整的孔道结构、较大孔道尺寸、很大的孔容以及大的比表面积。MoSiOx中Mo物种高度分散,且载量最高可达6.3%以上。以L酸中心为主的酸分布特征使MoSiOx材料呈中强酸强酸酸性。柴油HDS性能评价结果表明,MoSiOx具有很高的柴油HDS活性,加氢后柴油中含硫化合物的质量分数低于10×10-6。对合成影响因素的分析表明,HAcac及NaOH用量对复合材料的物化性能影响很大。因此,合成时应严格控制HAcac以及NaOH的用量。
摘要:
利用程序升温热解反应器─元素汞在线检测系统联用装置,研究了晋城煤中汞的热稳定性以及与热稳定性相关的晋城煤中汞的赋存形态。研究表明,煤中大部分汞与煤中无机矿物质伴/共生,少部分与煤中有机质伴/共生。其中,在200℃~300℃和900℃~1200℃释放的汞与煤中无机矿物质伴/共生,在300℃~600℃释放的汞部分与无机矿物质伴/共生,部分与煤中有机质伴/共生。
摘要:
在自制小型常压流化床内采用多孔介质为床料,对生物质进行气化实验,分别考察了富氧气氛下温度和氧气浓度、水蒸气气氛下温度和水蒸气流量及不同种类床料对生物质产气特性的影响。结果表明,多孔床料下气化产气中可燃气体积分数随气化温度的提高而增大;随氧气浓度的增加,产气中H2的体积分数从14.52%增加到19.71%,CO的体积分数从43.41%降低到36.41%;气化剂水蒸气流量对生物质气化影响存在最佳范围;多孔床料种类不同对H2和CO的生成以及对低碳氢化合物(CxHy)的催化裂解强度的促进作用也不同。
摘要:
Catalytic pyrolysis of Chinese Daqing atmospheric residue on a commercial fluid catalytic cracking (FCC) catalyst was investigated in a confined fluidized bed reactor. The results show that the commercial FCC catalyst has good capability of cracking atmospheric residue to light olefins. The analysis of gas samples shows that the content of total light olefins in cracked gas is above 80%. The analysis of liquid samples shows that the content of aromatics in liquid samples ranges from 60% to 80%, and it increases with the enhancement of reaction temperature. The yield of total light olefins shows a maximum with the increase of reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil, respectively. The optimal reaction temperature, the weight ratios of catalyst-to-oil and steam-to-oil are about 650℃, 15 and 0.75, respectively.