留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2016年  第44卷  第12期

显示方式:
研究论文
摘要:
基于滴管炉制备内蒙褐煤快速热解焦,借助高频炉开展快速热解焦与CO2的气化实验,考察了煤焦气化过程的结构演变特性。结果表明,随着反应的进行,气化半焦的石墨化程度不断增加,但未达到天然石墨的有序化程度;比表面积先增大后减小,而平均孔径总体呈相反的变化趋势;气化半焦的粒径在反应前期逐渐减小,当转化率大于74%,半焦粒径逐渐增大,归因于气化后期部分颗粒的黏结。
摘要:
采用热重分析仪考察了气化温度(850-1 150℃)和煤焦粒径(<60、505、950、1 515、2 000 μm)对常压下神木煤焦气化反应的影响。在此基础上,运用体积模型、缩核模型和随机孔模型研究了煤焦常压二氧化碳气化反应动力学,分析了内扩散对煤焦气化反应的影响。结果表明,随机孔模型能够准确预测反应速率随煤焦转化率的变化。基于本征动力学数据,通过对Thiele模数、内扩散效率因子的计算,并将其与实验效率因子相比较,发现计算效率因子能够评估内扩散对初始气化反应的影响,但不能准确评估整个气化过程中内扩散对气化反应的影响。
摘要:
基于热重分析仪开展负载碳酸钠神府烟煤/遵义无烟煤煤焦气化实验,并借助扫描电子显微镜和孔结构及比表面积分析仪表征焦样孔结构及表观结构变化,考察了反应温度(650-800℃)、气化剂(水蒸气、二氧化碳)及碳酸钠负载量(钠离子负载量2.2%、4.4%、6.6%,质量分数)对神府烟煤/遵义无烟煤焦样气化反应活性的影响。结果表明,碳酸钠有利于促进神府/遵义煤热解过程孔隙结构的发展。在二氧化碳气氛下,适宜催化剂负载量使神府烟煤反应活性提高,过多负载催化剂堵塞煤焦内部孔隙结构,使得气化反应活性降低,遵义无烟煤反应活性随负载量增加而提高,两者反应活性均随温度升高而提高。在水蒸气气氛下,神府烟煤/遵义无烟煤在一定条件下反应活性随催化剂负载量增大、温度升高而提高。碳酸钠的添加能够在保证气化反应性的前提下降低气化反应温度和活化能。
摘要:
采用灰熔点较低的襄阳煤和灰熔点较高的晋城无烟煤组成的混合煤样,利用XRF、SEM、DSC、XRD、三元相图等分析方法,探究了襄阳煤对晋城无烟煤煤灰熔融温度的影响。结果表明,配煤能有效降低高熔点煤灰的熔融温度,当襄阳煤的加入量小于24%时,混合煤灰熔融温度显著降低;襄阳煤的加入量在24%-40%时,混合煤灰熔融温度变化平缓且流动温度低于1 400℃。混合煤灰中的成分在1 000-1 200℃发生一系列的化学反应,主要包括SiO2与Al2O3结合产生高熔点物质莫来石以及Fe2O3、CaO与莫来石反应转化形成铁尖晶石、钙长石等新物质,由此造成了煤灰熔融温度的变化。基于BP神经网络对实验数据建立预测模型,其预测效果优于前人总结的经验公式,平均准确度高于99%。利用热力学软件HSC 5.0分析了CaO、Fe2O3对降低煤灰熔融温度的影响,分析表明,CaO对莫来石的转化作用优于Fe2O3
摘要:
以高灰熔点的晋城无烟煤和水稻秸秆为研究对象,通过CaO-Al2O3-SiO2三元相图、X射线衍射分析(XRD)和扫描电镜耦合X射线能谱分析(SEM-EDX)研究了弱还原气氛下水稻秸秆对晋城无烟煤的助熔机理。随着水稻秸秆添加比例的增加,灰熔融特征温度呈下降趋势,灰中碱性氧化物CaO、Na2O和K2O含量增多,结渣指数Rb/a值在0.20-0.69;当水稻秸秆添加量为20%(质量分数)时,流动温度(FT)降低至1 369℃,可满足气化炉液态排渣的要求;水稻秸秆的添加降低了灰中液相出现的温度,增加了液相物质出现的比例和几率,使灰更易发生熔融;混合灰中所形成的钠长石等低熔点矿物质以及钙长石、石英和莫来石所形成的低温共熔物导致灰熔点降低。
摘要:
利用TGA确定胜利褐煤盐酸脱灰煤和添加铁组分脱灰煤的着火温度,在着火温度进行燃烧反应,收集燃烧反应一定时间后的未反应残留物,利用FT-IR、XPS、XRD和Raman等对其进行表征,研究了胜利褐煤燃烧过程中铁的影响规律。结果表明,铁的加入降低脱灰胜利褐煤的着火温度,当添加量为3.50%时,着火温度降低的幅度最大。在着火温度燃烧反应一定时间后未反应残留物的FT-IR表明,其有机官能团结构无显著变化,说明铁的添加并不影响其有机官能团结构特性,有机官能团不会对燃烧性能产生太大的影响。添加铁使SL+在燃烧过程中未反应残留物结构芳香度下降,晶面间距增大,晶体结构中缺陷位相对增加,石墨化程度降低,烷基侧链增多,碳氧结构迅速减少,说明铁组分的加入改变了其燃烧过程中碳氧结构转化特性,抑制了石墨化转化速率与程度,即在燃烧反应过程中改变了其未反应残留物的微结构,从而改变了其反应历程,加速燃烧反应速率。
摘要:
研究了吸附剂修饰合成Fe2O3/Al2O3的氧化动力学。其中,吸附剂(K2O、Na2O、CaO)用于控制化学链燃烧过程中有毒氯化物、硫化物以及重金属的排放。首先在热重分析仪(TGA)上利用合成气作为还原气氛使氧载体呈还原态(FeO/Al2O3),在空气气氛下进行了原FeO/Al2O3以及三种吸附剂修饰FeO/Al2O3的氧化实验,实验温度分别为850、875、900和925℃。通过八种等温动力学模型对900℃下原FeO/Al2O3的氧化过程进行了分析。结果表明,phase boundary-controlled(contracting cylinder)模型能够很好地描述其氧化过程(FeO向Fe2O3转化过程)。利用该模型分别计算了原FeO/Al2O3、K2O修饰FeO/Al2O3、Na2O修饰FeO/Al2O3和CaO修饰FeO/Al2O3的氧化动力学参数,其表观活化能分别为13.71、20.21、21.62和24.20 kJ/mol。通过进行比较依据动力学参数计算得到的转化率随时间的函数以及实验获得的转化率随时间的函数,进一步证实了phase boundary-controlled(contracting cylinder)模型的可靠性以及相应动力学参数的准确性。
摘要:
利用热重分析-傅里叶红外光谱联用(TG-FTIR)和水平管式炉-X射线光电子能谱(XPS)研究了两种富氮生物质原料(大豆秸秆(SBS)和纤维板(FB))热解过程中NOx前驱物(NH3、HCN和HNCO)的释放特性,考察温度、升温速率及燃料含N物质结构对其NOx前驱物释放行为的影响。结果表明,燃料中的N来源不同(天然固有与人工添加)造成其转化差异:SBS释放的NOx前驱物主要为NH3而FB为NH3、HCN(快速)和HNCO(慢速);FB气相N主要随挥发分析出,而SBS则相反,在二次反应阶段析出;两种燃料中N的转化随温度变化,低温下富集于半焦N,600℃以上时更多向非半焦N转移,NOx前驱物以NH3为主,高温及高升温速率利于HCN生成,若以减排NOx为目的,热解温度控制在600℃为佳;两种燃料中N的结构均为胺类N(N-A),热解时部分N-A向半焦中杂环N转化,同时伴随杂环N分解;高温下吡啶N和吡咯N分解分别主要产生HCN和NH3
摘要:
Ni-Sm/SiC (Ni:9%, Sm:5%) catalysts were prepared by a hydrothermal route for carbon dioxide reforming of methane. The catalysts were characterized by XRD, BET, ICP, H2-TPR, TG-DTA and TEM. The catalytic performance, influence of different nickel precursors and carbon deposition in the CO2 reforming of CH4 were investigated. The results suggested that the Ni-Sm/SiC catalysts prepared by a hydrothermal route showed excellent catalytic activity, stability and good coke resistance. Different nickel precursors nearly had no impact on the performance of the catalysts.
摘要:
Citric acid hold great promise to improve the Mo-based catalyst performance for hydrogenation reaction applications. MoO3/CeO2-Al2O3 catalysts were prepared by impregnation method with adding citric acid into CeO2-Al2O3 composite supports and tested for sulfur resistant methanation. The syngas methanation activity increased with the increase of citric acid additive amount, and CO conversion could reach up 60% when the molar ratio of citric acid to Ce was 3. The prepared catalysts were characterized by BET, H2-TPR, XRD and XPS. The increased catalytic performance was mainly attributed to the increased amount of Ce species on the surface of catalysts which could decreased the interaction force between MoO3 and CeO2-Al2O3 supports. Additionally, the increased specific surface of CeO2-Al2O3 composite support was also in favor of catalytic performance.
摘要:
采用浸渍法制备了Ce改性的Silicalite-1分子筛催化剂,利用XRD、N2吸脱附、Py-FTIR和NH3-TPD等手段对催化剂进行了表征;针对甲醇转化制丙烯(MTP)反应,在常压、450℃和质量空速为9.6 h-1的反应条件下,利用连续流动固定床微型反应评价装置,考察了CeO2负载量对CeO2/Silicalite-1催化性能的影响。结果表明,与HZSM-5分子筛(SiO2/Al2O3(molar ratio)=200)相比,Silicalite-1分子筛具有更高的丙烯选择性和催化稳定性。Ce的引入可有效调节Silicalite-1分子筛的酸性质和孔结构;合适浓度的Ce改性处理(CeO2负载量(质量分数)为5.0%)使得Silicalite-1的强酸量降低,其丙烯选择性(质量分数)和催化稳定性分别由原来的31.9%和51 h增加到38.2%和72 h。
摘要:
用溶胶-凝胶法制备了不同组成的Mg-Co和Mg-Mn-Co复合氧化物,用于催化分解N2O。在较高活性的Mg-Mn-Co表面浸渍K2CO3溶液,制备K改性催化剂。用X射线衍射(XRD)、N2物理吸附(BET)、扫描电镜(SEM)、H2程序升温还原(H2-TPR)、O2程序升温脱附(O2-TPD)等技术表征催化剂结构,考察了复合氧化物的组成、K负载量等制备参数对催化剂活性的影响。结果表明,加入助剂K显著提高了催化剂活性,其中,0.02 K/MgMn0.2Co1.8O4活性较高,有氧无水、有氧有水气氛400℃连续反应50 h,N2O转化率分别保持97%和60%。有水-无水气氛交替实验表明,有水反应后再进行无水实验,K改性催化剂的稳定性较好。
摘要:
采用共沉淀法和浸渍法制备了贵金属负载均匀的镁铁水滑石基稀燃氮氧化物捕集(LNT)催化剂,并采用多种表征手段研究了焙烧温度对催化剂结构及NOx吸附-还原反应的影响。结果表明,500-700℃焙烧后催化剂晶相结构稳定,800℃焙烧后催化剂表面出现烧结,Pt颗粒发生团聚;随焙烧温度升高,催化剂的NOx脱附峰面积先减小后增大,但峰值温度变化不大;与500℃焙烧催化剂相比,800℃焙烧后催化剂表面NOx吸附物种及吸附路径发生改变,而还原反应产物中氨气/氮气体积比下降,NOx转化效率由91.7%降为85.2%。
摘要:
以硅铝比为5.3的NaY分子筛为母体,分别采用微波辅助离子交换法(AgCeY-1)、水热离子交换法(AgCeY-2)和液相离子交换法(AgCeY-3)制备了AgCeY-n吸附剂,并利用XRD、BET、XPS和Py-FTIR对吸附剂进行了表征。以噻吩和苯并噻吩为模型硫化物,甲苯和环己烯为竞争吸附组分,考察了制备方法对制备得到的吸附剂脱硫性能的影响。结果表明,AgCeY-n吸附剂上Ag、Ce元素分别以Ag+、Ce4+形式存在。经微波辅助离子交换法制备得到的AgCeY-1吸附剂表面Ag+、Ce4+含量均最高,且具有最高的L酸和B酸量。AgCeY-n吸附剂对硫化物的吸附选择大小顺序为:BT>TP,竞争吸附组分对AgCeY-n吸附脱硫性能的影响顺序为:环己烯>甲苯。在所研究的制备方法中,微波辅助离子交换法所需时间最短(20 min),合成的AgCeY-1对所研究的模拟油的吸附效果均最好,且具有较好的重复使用性能。各吸附剂对TP和BT的脱除能力大小顺序为:AgCeY-1 >AgCeY-2 >AgCeY-3。
摘要:
通过改进的溶胶-凝胶法(SG)、共沉淀法(CP)、表面沉淀法(PR)及混捏法(ME)制备TiO2-Al2O3复合载体,考察了不同制备方法对复合载体物理性质的影响。采用浸渍法制备Co-Mo/TiO2-Al2O3-X加氢脱硫催化剂,研究了Co-Mo/TiO2-Al2O3-X加氢脱硫催化剂的脱硫性能。利用XRD、BET、SEM等表征手段对复合载体及催化剂进行表征分析。结果表明,SG法制备的复合载体粒径均一,具有较大的比表面积、孔径和孔体积;CP法制备复合载体时TiO2以单层或亚单层的分散状态高度分散于γ-Al2O3中。在氢气压力3.0 MPa、反应温度280℃、反应时间4 h、液时空速1.4 h-1和氢油比600的条件下,SG法制备的Co-Mo/TiO2-Al2O3催化剂具有较高加氢脱硫活性,噻吩转化率达到96.6%。