留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能

宋卓卓 余宗宝 武宏大 肖伟 耿忠兴 任铁强 史春薇 杨占旭

宋卓卓, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 史春薇, 杨占旭. CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60077-4
引用本文: 宋卓卓, 余宗宝, 武宏大, 肖伟, 耿忠兴, 任铁强, 史春薇, 杨占旭. CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60077-4
SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60077-4
Citation: SONG Zhuo-zhuo, YU Zong-bao, WU Hong-da, XIAO Wei, GENG Zhong-xing, REN Tie-qiang, SHI Chun-wei, YANG Zhan-xu. Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60077-4

CoSOH/Co(OH)2复合纳米片的制备及其氧析出催化性能

doi: 10.1016/S1872-5813(21)60077-4
基金项目: 国家自然科学基金(21671092),辽宁省“兴辽英才”创新领军人才项目(XLYC1802057),辽宁省-沈阳材料科学国家研究中心联合研发基金(2019010280-JH3/301)和抚顺英才计划青年拔尖人才(FSYC202007001)资助
详细信息
    作者简介:

    宋卓卓:952808633@qq.com

    通讯作者:

    Tel: 13841322030, E-mail: zhanxuy@126.com

  • 中图分类号: O614.8

Preparation of CoSOH/Co(OH)2 composite nanosheets and its catalytic performance for oxygen evolution

Funds: The project was supported by the National Natural Science Foundation of China (21671092), Liaoning Revitalization Talents Program(XLYC1802057), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019010280-JH3/301) and Young Top Talents of Fushun Talent Plan (FSYC202007001)
  • 摘要: 以硝酸钴与硝酸锌为原料,加入尿素和氟化钠在反应釜120 ℃下均匀生长在碳纸上得到Zn-Co(OH)2复合前驱体,通过在室温下用5 mol/L NaOH和1 mol/L Na2S溶液将前驱体刻蚀并部分硫化合成了CoSOH/Co(OH)2复合材料,考察其在电解水析氧反应(OER)中的催化性能。利用XRD、SEM、TEM、XPS对催化剂的微观结构及物理化学性质进行了表征。结果表明,该方法可以刻蚀Zn原子,留下氧空位并引入掺杂S元素,氧空位和S掺杂对OER反应起到积极促进作用。同时,非晶的CoSOH也有较好的OER活性。CoSOH与Co(OH)2的协同作用使得材料表现出最优催化效果(过电位η = 310 mV,塔菲尔斜率b = 90 mV/dec)及长时间的电化学稳定性,具有较高的电催化产氧性能。
  • 图  1  CFP (a),Zn-Co(OH)2 (b),Co(OH)2 (c)和CoSOH/Co(OH)2 (d)的XRD谱图

    Figure  1  XRD patterns of CFP (a), Zn-Co(OH)2 (b), Co(OH)2 (c) and CoSOH/Co(OH)2 (d)

    图  2  CFP (a),Zn-Co(OH)2 (b),Co(OH)2 (c)和CoSOH/Co(OH)2 (d)的SEM照片;Zn-Co(OH)2 (e),Co(OH)2 (f)和CoSOH/Co(OH)2 ((g),(h))的SEM-EDS元素分布

    Figure  2  SEM images of Zn-Co(OH)2 (a), Co(OH)2 (b), CoSOH/Co(OH)2 (c) and CFP (d); SEM-EDS images of Zn-Co(OH)2 (e),Co(OH)2 (f) and CoSOH/Co(OH)2 ((g), (h))

    图  3  Zn-Co(OH)2 (a),Co(OH)2 (b)和CoSOH/Co(OH)2 ((d),(e))的TEM照片(其中,图(e)为图(d)中红色虚线框);Co(OH)2 (c)和CoSOH/Co(OH)2 (f)的HRTEM照片

    Figure  3  TEM images of Zn-Co(OH)2 (a), Co(OH)2 (b) and CoSOH/Co(OH)2 (d, e is the red dashed box in d); HRTEM images of Co(OH)2 (c) and CoSOH/Co(OH)2 (f)

    图  4  不同催化剂的XPS谱图

    Figure  4  XPS spectra of Zn-Co(OH)2, Co(OH)2 and CoSOH/Co(OH)2 (a): XPS survey spectra; (b): Co 2 p XPS spectra; (c): O 1 s XPS spectra; (d): S 2 p XPS spectrum

    a: Zn-Co(OH)2; b: Co(OH)2; c: CoSOH/Co(OH)2

    图  5  Zn-Co(OH)2、Co(OH)2和CoSOH/Co(OH)2的电化学测试

    Figure  5  Electrochemical test of Zn-Co(OH)2, Co(OH)2 and CoSOH/Co(OH)2

    (a): CV activation curve of CoSOH/Co(OH)2; (b): LSV curves; (c): Tafel slope; (d): EIS spectra; (e): Stability test of Co(OH)2 and CoSOH/Co(OH)2; CV curves of CoSOH/Co(OH)2 (f), Co(OH)2(g) and CoSOH/Co(OH)2 (h) at different scan rates; (i): Cdl value

    图  6  CoSOH/Co(OH)2在OER前后的XRD谱图(a),Co 2p分峰谱图(b),S 2p分峰谱图(c)和O 1s分峰谱图

    Figure  6  Comparisons of XRD pattern (a), Co 2p XPS spectra (b), S 2p XPS spectra (c) and O 1s spectra (d) of CoSOH/Co(OH)2 before and after OER reaction

    图  7  OER反应后CoSOH/Co(OH)2的SEM(a),TEM(b)和HRTEM(c)照片

    Figure  7  SEM image (a), TEM image (b) and HRTEM image (c) of CoSOH/Co(OH)2 after OER reaction

    表  1  碱性介质中不同基底的钴基OER电催化剂的性能比较

    Table  1  Performance comparison of cobalt-based OER electrocatalysts with different substrates in alkaline solution

    CatalystTafel slope/(mV·dec−1)Overpotential/mVElectrolyteSubstrateReference
    CoSOH/Co(OH)2903101.0 mol/L KOHCFPthis work
    Co9S8/ZnS/C1443901.0 mol/L KOHRDE[7]
    PA-CoSx(OH)y483201.0 mol/L KOHGCE[13]
    CoP3 CPs763401.0 mol/L KOHCFP[27]
    Co-Ni-Ox/BG54.83101.0 mol/L KOHGCE[28]
    Co-50W-B/CC96.83941.0 mol/L NaOHCC[29]
    The current density of all materials corresponding to the overpotential is 10 mA/cm2; RDE: Rotating disk electrode; GCE: Glassy carbon electrode; CC: Carbon Cloth
    下载: 导出CSV
  • [1] 贺建平, 张磊, 陈琳, 杨占旭, 佟宇飞. CeO2改性Cu/Zn-Al水滑石衍生催化剂对甲醇水蒸气重整制氢性能的影响[J]. 高等学校化学学报,2017,38(10):2329−2331.

    HE Jian-ping, ZHANG Lei, CHEN Lin, YANG Zhan-xu, TONG Yu-fei. Effect of CeO2 on Cu/Zn-Al catalysts derived from hydrotalcite precursor for methanol steam reforming[J]. Chem J Chin Univ,2017,38(10):2329−2331.
    [2] PENG L S, AHMAD S S S, WEI Z D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction[J]. Chin J Catal,2018,39(10):1575−1593. doi: 10.1016/S1872-2067(18)63130-4
    [3] HWANG J, RAO R, GIORDANO L, KATAYAMA Y, YU Y, SHAO-HORN Y. Perovskites in catalysis and electrocatalysis[J]. Science,2017,358(6364):751−756. doi: 10.1126/science.aam7092
    [4] SUEN N T, HUNG S F, QUAN Q, ZHANG N, XU Y J, CHEN H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem Soc Rev,2017,46(2):337−365. doi: 10.1039/C6CS00328A
    [5] YANG J Z, YU Z B, SUN W, LI Y, WU H D, GENG Z X, YANG Z X. Efficient electrocatalytic performance of WP nanorods propagated on WS2/C for hydrogen evolution reduction[J]. ChemElectroChem,2020,7(14):3082−3088. doi: 10.1002/celc.202000649
    [6] GUO S T, TAN W, QIU J Y, DU J L, YANG Z X, WANG X R. Classification of spatially confined reactions and the electrochemical applications of molybdenum-based nanocomposites[J]. Aust J Chem,2020,73(7):587−600. doi: 10.1071/CH19505
    [7] 李志学, 任铁强, 耿忠兴, 杨占旭. 片状Co9S8/ZnS/C复合材料的制备及电催化产氧性能[J]. 无机化学学报,2019,35(12):2318−2322.

    LI Zhi-xue, REN Tie-qiang, GENG Zhong-xing, YANG Zhan-xu. Preparation and Electrocatalytic performance of flake Co9S8/ZnS/C composites for oxygen evolution reduction[J]. Chin J Inorg Chem,2019,35(12):2318−2322.
    [8] CONSIDINE M J, DIAZ-VIVANCOS P, KERCHEV P, SIGNORELLI S, AGUDELO-ROMERO P, GIBBS DANIEL J, FOYER C H. Learning to breathe: developmental phase transitions in oxygen status[J]. Trends Plant Sci,2017,22(2):140−153. doi: 10.1016/j.tplants.2016.11.013
    [9] YANG Q Q, LIU L, XIAO L, ZHANG L, LI J, WEI Z D. Co9S8@N, S-codoped carbon core-shell structured nanowires: constructing a fluffy surface for high-density active sites[J]. J Mater Chem A,2018,6(30):14752−14760. doi: 10.1039/C8TA03604G
    [10] YANG Q J, WANG Q S, LONG Y, WANG F, WU L L, PAN J, HAN J, LEI Y, SHI W D, SONG S Y. In situ formation of Co9S8 quantum dots in MOF-Derived ternary metal layered double hydroxide nanoarrays for high performance hybrid supercapacitors[J]. Adv Energy Mater,2020,10(7):1903193. doi: 10.1002/aenm.201903193
    [11] JIN S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts?[J]. ACS Energy Lett,2017,2(8):1937−1938. doi: 10.1021/acsenergylett.7b00679
    [12] CAO D F, LIU D B, CHEN S M, MOSES O A, CHEN X J, XU W J, WU C Q, ZHENG L R, CHU S Q, JIANG H L, WANG C D, GE B H, WU X J, ZHANG J, SONG L. Operando X-ray spectroscopy visualizing the chameleon-like structural reconstruction on an oxygen evolution electrocatalyst[J]. Energy Environ Sci,2021,14:906−915. doi: 10.1039/D0EE02276D
    [13] ZENG Y F, CHEN L J, CHEN R, WANG Y Y, XIE C, TAO L, HUANG L L, WANG S Y. One-step, room temperature generation of porous and amorphous cobalt hydroxysulfides from layered double hydroxides for superior oxygen evolution reactions[J]. J Mater Chem A,2018,6(47):24311−24316. doi: 10.1039/C8TA08149B
    [14] LI W, WANG D D, ZHANG Y Q, LI T, WANG T H, ZOU Y Q, WANG Y Y, CHEN R, WANG S Y. Defect engineering for fuel-cell electrocatalysts[J]. Adv Mater,2020,32(19):1907879. doi: 10.1002/adma.201907879
    [15] WANG Y Y, QIAO M, LI Y F, WANG S Y. Tuning surface electronic configuration of NiFe LDHs nanosheets by introducing cation vacancies(Fe or Ni) as highly efficient electrocatalysts for oxygen evolution reaction[J]. Small,2018,14(17):1800136. doi: 10.1002/smll.201800136
    [16] HOU J G, ZHANG B, LI Z W, CAO S Y SUN Y Q, WU Y Z, GAO Z M, SUN L C. Vertically aligned oxygenated-CoS2-MoS2 heteronanosheet architecture from polyoxometalate for efficient and stable overall water splitting[J]. ACS Catal,2018,8(5):4612−4621. doi: 10.1021/acscatal.8b00668
    [17] WAN L J, YAN S C, FENG J Y, YANG Z S, FAN X X, LI Z S, ZOU Z G. Solvothermal synthesis of core-shell ZnO hollow microhemispheres[J]. Colloid Surf A-Physicochem Eng Asp,2012,396:46−50. doi: 10.1016/j.colsurfa.2011.12.039
    [18] CHEN L L, ZHANG J Y, REN X, GE R X, TENG W Q, SUN X P, LI X M. A Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media[J]. Nanoscale,2017,9(43):16632−16637. doi: 10.1039/C7NR06001G
    [19] CABRERA-GERMAN D, GOMEZ-SOSA G, HERRERA-GOMEZ A. Accurate peak fitting and subsequent quantitative composition analysis of the spectrum of Co 2p obtained with Al Kα radiation: I: Cobalt spinel[J]. Surf Interface Anal,2016,48(5):252−256. doi: 10.1002/sia.5933
    [20] LUKOWSKI M A, DANIEL A S, MENG F, FORTICAUX A, LI L S, JIN S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets[J]. J Am Chem Soc,2013,135(28):10274−10277. doi: 10.1021/ja404523s
    [21] FABER M S, DZIEDZIC R, LUKOWSKI M A, S. KAISER N, DING Q, JIN S. High-performance electrocatalysis using metallic cobalt pyrite(CoS2) micro-and nanostructures[J]. J Am Chem Soc,2014,136(28):10053−10061. doi: 10.1021/ja504099w
    [22] YIN J, LI Y, LV F, LU M, SUN K, WANG W, WANG L, CHENG F Y, LI Y F, XI P X, GUO S J. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires for portable Zn-Air batteries driven water splitting devices[J]. Adv Mater,2017,29(47):1704681.1−1704681.8.
    [23] LIU Y W, XIAO C, LYU M J, LIN Y, CAI W Z, HUA P C, TONG W, ZOU Y M, XIE Y. Ultrathin Co3S4 nanosheets that synergistically engineer spin states and exposed polyhedra that promote water oxidation under neutral conditions[J]. Angew Chem Int Ed,2015,127(38):11383−11387. doi: 10.1002/ange.201505320
    [24] CAI P W, HUANG J H, CHEN J X, WEN Z H. Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium[J]. Angew Chem Int Ed,2017,129(17):4936−4939. doi: 10.1002/ange.201701280
    [25] LANG S, ZHAN K M, LIU S Q. Photocatalytic degradation of MO and phenol over novel β-CoOOH/g-C3N4 composite under visible light irradiation[J]. Mater Lett,2018,228:121−124. doi: 10.1016/j.matlet.2018.05.134
    [26] SHI Y M, DU W, ZHOU W, WANG C H, LU S S, LU S Y, ZHANG B. Unveiling the promotion of surface-adsorbed chalcogenate on the electrocatalytic oxygen evolution reaction[J]. Angew Chem Int Ed,2020,132(50):22656−22660. doi: 10.1002/ange.202011097
    [27] WU T L, PI M Y, WANG X D, ZHANG D K, CHEN S J. Three-dimensional metal-organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen[J]. Phys Chem Chem Phys,2017,19(3):2104−2110. doi: 10.1039/C6CP07294A
    [28] JIANG Y Y, DONG K, LU Y Z, LIU J W, CHEN B, SONG Z Q, NIU L. Bimetallic oxide coupled with B-doped graphene as highly efficient electrocatalyst for oxygen evolution reaction[J]. Sci China-Mater,2020,63(7):1247−1256. doi: 10.1007/s40843-020-1282-6
    [29] 施嘉伦, 盛敏奇, 吴琼, 吕凡. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能[J]. 材料研究学报,2020,34(4):25−33.

    SHI Jia-lun, SHENG Min-qi, WU Qiong, LV Fan. Preparation of electrode materials of amorphous Co-W-B/Carbon cloth composite and their electro-catalytic performance for electrolysis of water[J]. Chin J Mater Res,2020,34(4):25−33.
    [30] MABAYOJE O, SHOOLA A, WYGANT B MULLINS B. The role of anions in metal chalcogenide oxygen evolution catalysis: electrodeposited thin films of nickel sulfide as “pre-catalysts”[J]. ACS Energy Lett,2016,1(1):195−201. doi: 10.1021/acsenergylett.6b00084
    [31] GUAN D Q, RYU G, HU Z W, ZHOU J, DONG C L, HUANG Y C, ZHANG K F, ZHONG Y J, ZHU M, WU X H, PAO C, LIN H, CHEN C, ZHOU W, SHAO Z P. Utilizing ion leaching effects for achieving high oxygen-evolving performance on hybrid nanocomposite with self-optimized behaviors[J]. Nat Commun,2020,11(1):1−10. doi: 10.1038/s41467-019-13993-7
    [32] ZHAO C X, LI B Q, ZHAO M, LIU J N, ZHAO L D, CHEN X, ZHANG Q. Precise anionic regulation of NiFe hydroxysulfide assisted by electrochemical reactions for efficient electrocatalysis[J]. Energy Environ Sci,2020,13(6):1711−1716. doi: 10.1039/C9EE03573G
    [33] WILDE P, DIECKHÖFER S, QUAST T, XIANG W K, BHATT A, CHEN Y T, SEISEL S, BARWE S, ANDRONESCU C, LI T, SCHUMANN W, MASA J. Insights into the formation, chemical stability, and activity of transient NiyP@NiOx core-shell heterostructures for the oxygen evolution reaction[J]. ACS Appl Energy Mater,2020,3(3):2304−2309. doi: 10.1021/acsaem.9b02481
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  6
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 修回日期:  2021-04-06
  • 网络出版日期:  2021-04-28

目录

    /

    返回文章
    返回