留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于赤泥载氧体的蓝藻化学链热解和气化特性研究

张海峰 陈璐 刘先宇 葛晖骏 宋涛 沈来宏

张海峰, 陈璐, 刘先宇, 葛晖骏, 宋涛, 沈来宏. 基于赤泥载氧体的蓝藻化学链热解和气化特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60087-7
引用本文: 张海峰, 陈璐, 刘先宇, 葛晖骏, 宋涛, 沈来宏. 基于赤泥载氧体的蓝藻化学链热解和气化特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60087-7
ZHANG Hai-feng, CHEN Lu, LIU Xian-yu, GE Hui-jun, SONG Tao, SHEN Lai-hong. Characteristics of Cyanobacteria Pyrolysis and Gasification during Chemical Looping Process with Red Mud Oxygen Carrier[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60087-7
Citation: ZHANG Hai-feng, CHEN Lu, LIU Xian-yu, GE Hui-jun, SONG Tao, SHEN Lai-hong. Characteristics of Cyanobacteria Pyrolysis and Gasification during Chemical Looping Process with Red Mud Oxygen Carrier[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60087-7

基于赤泥载氧体的蓝藻化学链热解和气化特性研究

doi: 10.1016/S1872-5813(21)60087-7
基金项目: 国家自然科学基金(52076044, 52006108),江苏省自然科学基金(BK20190707)资助
详细信息
    作者简介:

    张海峰,jstzhanghf@126.com

    通讯作者:

    E-mail: lhshen@seu.edu.cn, Tel: 025-83795598;Fax: 025-57714489

Characteristics of Cyanobacteria Pyrolysis and Gasification during Chemical Looping Process with Red Mud Oxygen Carrier

Funds: The project was supported by the National Natural Science Foundation of China (52076044, 52006108), and Natural Science Foundation of Jiangsu Province (BK20190707)
  • 摘要: 本研究以高挥发分的蓝藻成型颗粒为对象,采用赤泥作为载氧体,开展蓝藻化学链热解和气化特性研究,考察赤泥载氧体对热解和气化行为的影响规律。基于流化床反应器,研究了不同温度(750–900 ℃)和不同比氧耗(0.1–0.7)下蓝藻成型颗粒化学链热解和气化过程中合成气组分分布、碳转化率和速率、有效合成气组分和合成气中H2/CO的分布规律。研究结果表明,载氧体对蓝藻成型颗粒热解气化过程具有显著的促进作用;载氧体提高了成型蓝藻挥发分释放导致的压力梯度,使得挥发分有相对发达的孔道逐步释放;化学链气化合成气中H2浓度最高,其值在45%以上,其次分别是CO2、CH4和CO;反应温度和比氧耗的升高能够提升碳转化率;当反应温度由750 ℃升高到950 ℃时,合成气中H2/CO的值由7.26下降为4.83; H2/CO随比氧耗的增加呈现先升高后降低的趋势,在比氧耗为0.5时,H2/CO的峰值为5.6。
  • 图  1  新鲜赤泥载氧体的XRD谱图

    Figure  1  XRD analysis of the fresh red mud oxygen carrier

    图  2  单流化床实验系统示意图

    Figure  2  Schematic layout of the laboratory setup

    图  3  气体产物浓度分布随反应时间的变化(a)热解过程

    Figure  3  Gas distribution with the reaction time(a) Pyrolysis process

    图  4  碳转化速率随反应时间的变化

    Figure  4  Carbon conversion rate with reaction time

    图  5  反应温度对合成气中H2/CO的影响

    Figure  5  Effect of reaction temperature on H2/CO in the syngas

    图  6  反应温度对合成气分布、碳转化率、有效合成气浓度和H2/CO的影响

    Figure  6  Effect of reaction temperature on gas distributions, carbon conversion, syngas gas content and H2/CO

    图  7  比氧耗对合成气分布、碳转化率、有效合成气浓度和H2/CO的影响

    Figure  7  Effect of oxygen carrier to fuel ratio on distributions, carbon conversion, syngas gas content and H2/CO

    图  8  成型蓝藻颗粒在不同工况下的SEM照片

    Figure  8  SEM analysis of the remaining char samples under different reaction conditions

    图  9  不同化学链热解和气化实验后的赤泥载氧体XRD分析(a)化学链热解过程;(b)化学链气化过程

    Figure  9  XRD analysis of the reacted red mud oxygen carrier under different chemical looping pyrolysis (a) and gasification (b) conditions

    表  1  赤泥的XRF分析

    Table  1  Chemical compositions (w %) of raw red mud analyzed by XRF

    ComponentFe2O3Al2O3SiO2Na2OCaOK2OTiO2
    Content (wt.%)15.3026.4522.007.4816.962.555.17
    下载: 导出CSV

    表  2  赤泥载氧体特性

    Table  2  Properties of the red mud oxygen carrier used in the present study

    PropertiesDate
    Apparent density (ρs)/(kg·m−3)837
    Main chemical elements/w %Fe, Ca, Ti, Si, Al, K
    Minimum fluidization velocity(um)/(cm·s−1)1.73@750 ℃, 1.67@800 ℃,
    1.62@850 ℃,
    1.58@900 ℃, 1.57@950 ℃
    Median particle diameter(dm)/mm0.373
    Fluidization number(ω)2.40@750 ℃, 2.47@800 ℃,
    2.55@850 ℃, 2.63@900 ℃, 2.64@950 ℃
    ① calculated by Wen and Yu model
    ② determined by CAMSIZER-XT (Retsch Technology GmbH, Germany)
    ③ calculated by ω=u0/umf,(u0, Operting air velocity, cm/s)
    下载: 导出CSV

    表  3  蓝藻的元素分析和工业分析

    Table  3  Proximate, ultimate analysis of cyanobacteria sample

    Proximate analysis /w %Ultimate analysis /w %
    MarVdFCdAdCadHadOadNadSad
    84.7385.327.557.1340.7413.0234.4411.410.39
    下载: 导出CSV
  • [1] 商兆堂, 任健, 秦铭荣, 夏瑛, 何浪, 陈钰文. 气候变化与太湖蓝藻暴发的关系[J]. 生态学杂志,2010,29:55−61.

    SHANG Zhao-tang, REN Jian, QIN Ming-rong, XIA Ying, HE Lang, CHEN Yu-wen. Relationships between climatic change and cyanobacterial bloom in Taihu Lake[J]. Chin J Ecol,2010,29:55−61.
    [2] 韩士群, 严少华, 王震宇, 宋伟, 刘海琴, 张建秋. 太湖蓝藻无害化处理资源化利用[J]. 自然资源学报,2009,24:431−438. doi: 10.11849/zrzyxb.2009.03.007

    HAN Shi-qun, YAN Shao-hua, WANG Zhen-yu, SONG Wei, LIU Hai-qin, ZHANG Jian-qiu. Harmless disposal and resources utilizations of Taihu Lake blue algae[J]. J Nat Resour,2009,24:431−438. doi: 10.11849/zrzyxb.2009.03.007
    [3] MENDIARA T, GARCIA-LABIANO F, ABAD A, GAYAN P, DIEGO L, IZQUIERDO M, ADANEZ J. Negative CO2 emissions through the use of biofuels in chemical looping technology: A review[J]. Appl Energy,2018,232:657−684. doi: 10.1016/j.apenergy.2018.09.201
    [4] ZHAO H, GUO L, Zou X. Chemical-looping auto-thermal reforming of biomass using Cu-based oxygen carrier[J]. Appl Energy,2015,157:408−415. doi: 10.1016/j.apenergy.2015.04.093
    [5] KELLER M, FUNG J, LEION H, MATTISSON T. Cu-impregnated alumina/silica bed materials for chemical looping reforming of biomass gasification gas[J]. Fuel,2016,180(15):448−456.
    [6] LIN Y, WANG H, WANG Y, HUO R, HUANG Z, LI H, FANG Y. A review of biomass chemical looping gasification in China[J]. Energy Fuels,2020,34:7847−7862. doi: 10.1021/acs.energyfuels.0c01022
    [7] HUANG Z, HE F, FENG Y, ZHAO K, ZHENG A, CHANG S, LI H. Synthesis gas production through biomass direct chemical looping conversion with natural hematite as an oxygen carrier[J]. Bioresour Technol,2013,140:138−145. doi: 10.1016/j.biortech.2013.04.055
    [8] WEI G, HE F, HUANG Z, ZHENG A. Continuous operation of a 10kWth chemical looping integrated fluidized bed reactor for gasifying biomass using an iron-based oxygen carrier[J]. Energy Fuels,2015,29:233−241. doi: 10.1021/ef5021457
    [9] WANG K, YU Q, QIN Q, HOU L, DUAN W. Thermodynamic analysis of syngas generation from biomass using chemical looping gasification method[J]. Int J Hydrogen Energy,2016,41(24):10346−10353. doi: 10.1016/j.ijhydene.2015.09.155
    [10] CHEN Z, LIAO Y, LIU G, MO F, MA X. Application of Mn-Fe composite oxides loaded on Alumina as oxygen carrier for chemical looping gasification[J]. Waste Biomass Valorization,2020,11:6395−6409. doi: 10.1007/s12649-019-00855-y
    [11] LIU G, LIAO Y, WU Y, MA X. Enhancement of Ca2Fe2O5 oxygen carrier through Mg/Al/Zn oxide support for biomass chemical looping gasification[J]. Energy Convers Manag,2019,195:262−273. doi: 10.1016/j.enconman.2019.04.087
    [12] 王旭锋, 刘晶, 刘丰. 基于CoFe2O4载氧体的生物质化学链气化热力学分析及实验研究[J]. 燃料化学学报,2019,47(3):306−311.

    WANG Xu-feng, LIU Jin, LIU Feng. Thermodynamic analysis and experimental studies on chemical looping gasification of biomass with CoFe2O4 as oxygen carrier[J]. J Fuel Chem Technol,2019,47(3):306−311.
    [13] 王旭锋, 刘晶, 刘丰, 杨应举. 基于CoFe2O4载氧体的生物质化学链气化反应特性[J]. 化工学报,2019,70(4):1583−1590.

    WANG Xu-feng, LIU Jin, LIU Feng, YANG Ying-ju. Characteristics of biomass chemical looping gasification with CoFe2O4 as oxygen carrier[J]. CIESC,2019,70(4):1583−1590.
    [14] KWON B, KANG M, PARK N, LEE T, BEAK J, KIM U, RYU H. Improvement of oxygen mobility with the formation of defects in the crystal structure of red mud as an oxygen carrier for chemical looping combustion[J]. J Nanosci Nanotechnol,2020,20(11):7075−7080. doi: 10.1166/jnn.2020.18845
    [15] SHEN X, YAN F, ZHANG Z, LI C, ZHAO S, ZHANG Z. Enhanced and environment-friendly chemical looping gasification of crop straw using red mud as a sinter-resistant oxygen carrier[J]. Waste Manag,2021,121:354−364. doi: 10.1016/j.wasman.2020.12.028
    [16] MENDIARA T, PEREZ R, ABAD A, DE DIEGO LF, GARCIA-LABIANO F, GAYAN P, ADANEZ J. Low-cost Fe-based oxygen carrier materials for the iG-CLC process with coal[J]. Ind Eng Chem Res,2012,51(50):16216−16229. doi: 10.1021/ie302157y
    [17] MENDIARA T, DE DIEGO LF, GARCIA-LABIANO F, GAYAN P, ABAD A, ADANEZ J. Behaviour of a bauxite waste material as oxygen carrier in a 500 Wth CLC unit with coal[J]. Int J Greenh Gas Control,2013,17:170−182. doi: 10.1016/j.ijggc.2013.04.020
    [18] MENDIARA T, GAYAN P, ABAD A, DE DIEGO LF, GARCIA-LABIANO F, ADANEZ J. Performance of a bauxite waste as oxygen-carrier for chemical-looping combustion using coal as fuel[J]. Fuel Process Technol,2013,109:57−69. doi: 10.1016/j.fuproc.2012.09.038
    [19] MENDIARA T, GARCIA-LABIANO F, GAYAN P, ABAD A, DE DIEGO LF, ADANEZ J. Evaluation of the use of different coals in chemical looping combustion using a bauxite waste as oxygen carrier[J]. Fuel,2013,106:814−26. doi: 10.1016/j.fuel.2012.11.047
    [20] BAO JH, CHEN LY, LIU F, FAN Z, NIKOLIC HS, LIU KL. Evaluating the effect of inert supports and alkali sodium on the performance of red mud oxygen carrier in chemical looping combustion[J]. Ind Eng Chem Res,2016,55(29):8046−8057. doi: 10.1021/acs.iecr.6b01835
    [21] CHEN L, ZHANG Y, LIU F, LIU K. Development of a cost-effective oxygen carrier from red mud for coal-fueled chemical-looping combustion[J]. Energy Fuels,2015,29(1):305−313. doi: 10.1021/ef501950w
    [22] DENG GX, LI KZ, GU ZH, ZHU X, WEI YG, CHENG XM, WANG H. Synergy effects of combined red muds as oxygen carriers for chemical looping combustion of methane[J]. Chem Eng J,2018,341:588−600. doi: 10.1016/j.cej.2018.02.072
    [23] WEN CY, YU YH. A generalized method for predicting the minimum fluidization velocity[J]. AIChE J,1966,12:610−612. doi: 10.1002/aic.690120343
    [24] MA S, CHEN S, ZHU M, ZHAO Z, HU J, WU M, TOAN S, XIANG W. Enhanced sintering resistance of Fe2O3/CeO2 oxygen carrier for chemical looping hydrogen generation using core-shell structure[J]. Int J Hydrogen Energy,2019,44(13):6491−6504. doi: 10.1016/j.ijhydene.2019.01.167
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  17
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-04-13
  • 网络出版日期:  2021-04-30

目录

    /

    返回文章
    返回