留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zn-Al共掺杂La2O3催化剂在甲烷氧化偶联中的性能

黎营涛 牛鹏宇 王强 贾丽涛 林明桂 李德宝

黎营涛, 牛鹏宇, 王强, 贾丽涛, 林明桂, 李德宝. Zn-Al共掺杂La2O3催化剂在甲烷氧化偶联中的性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60100-7
引用本文: 黎营涛, 牛鹏宇, 王强, 贾丽涛, 林明桂, 李德宝. Zn-Al共掺杂La2O3催化剂在甲烷氧化偶联中的性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60100-7
LI Ying-tao, NIU Peng-yu, WANG Qiang, JIA Li-tao, LIN Ming-gui, LI De-bao. Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60100-7
Citation: LI Ying-tao, NIU Peng-yu, WANG Qiang, JIA Li-tao, LIN Ming-gui, LI De-bao. Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60100-7

Zn-Al共掺杂La2O3催化剂在甲烷氧化偶联中的性能

doi: 10.1016/S1872-5813(21)60100-7
基金项目: 山西省科技计划揭榜招标项目(20191101012)和煤转化国家重点实验室自主研究课题(2020BWZ003)资助
详细信息
    作者简介:

    黎营涛:18361223156@163.com

    通讯作者:

    Tel: +86-0351-4040428, E-mail: niupy@sxicc.ac.cn

    linmg@sxicc.ac.cn

  • 中图分类号: O643

Performance of Zn-Al co-doped La2O3 catalysts in the oxidative coupling of methane

Funds: The project was supported by Shanxi Science and Technology Department bidding project (20191101012) and the autonomous research project of SKLCC (2020BWZ003)
  • 摘要: 采用柠檬酸溶胶凝胶法制备了Zn掺杂和Zn-Al共掺杂的La2O3催化剂,运用原位表征技术研究了该催化剂在甲烷氧化偶联(OCM)反应中的构效关系。原位XRD表征结果发现,La2O3晶体在高温下沿c轴发生热膨胀。H2-TPR结果显示,La2O3基催化剂中含有两种类型的氧物种,即强结合氧和弱结合氧;XPS结果表明,强结合氧归属于为O。Zn掺杂的La2O3催化剂在高温下形成更多的氧空位,能活化氧气产生更多的强结合氧,因而在OCM反应中表现出较好的催化性能。Al的共掺杂能促进Zn在La2O3中的分散,进一步增加强结合氧数量,提升OCM反应C2+烃的选择性。
  • 图  1  La2O3基催化剂的XRD谱图

    Figure  1  XRD patterns of various La2O3-based catalysts

    图  2  La2O3基催化剂的吸附等温线

    Figure  2  N2 adsorption/desorption curves of various La2O3-based catalysts

    图  3  La2O3基催化剂的XPS谱图

    Figure  3  XPS spectra of various La2O3-based catalysts (a): La 3d5/2: (b): Zn 2p

    图  4  催化剂TEM-Mapping照片

    Figure  4  TEM-Mapping images of (1) LZ10 and (2) 1.0Al-LZ10

    图  5  La2O3基催化剂的原位XRD谱图

    Figure  5  In situ XRD patterns of various catalysts at 25 and 750 °C

    (a): L; (b): LZ100; (c):LZ50; (d): LZ10; (e): 1.0Al-LZ10

    图  6  催化剂的H2-TPR谱图

    Figure  6  H2-TPR profiles of various catalysts

    (a): L catalyst pretreated at 100 and 750 °C; (b): La2O3-based catalysts pretreated at 750 °C

    图  7  La2O3基催化剂的XPS O 1s谱图

    Figure  7  O 1 s XPS spectra of various La2O3-based catalysts

    图  8  La2O3基催化剂上的OCM反应性能

    Figure  8  Performance of various La2O3-based catalysts in OCM (a): CH4 conversion; (b): O2 conversion; (c): selectivity to C2+ hydrocarbons; (d): yield of C2+ hydrocarbons

    图  9  800 ℃时C2+选择性与Oβ/Oα的关联性

    Figure  9  Relation between the selectivity to C2+ hydrocarbons and the ratio of Oβ/Oα for OCM over various La2O3-based catalysts at 800 °C

    表  1  通过XRD计算的La2O3基催化剂晶格参数

    Table  1  Crystalline phase properties of the La2O3-based catalysts measured by XRD

    CatalystLattice parameterα = β /(°)γ /(°)
    a = bc
    L3.93946.139590120
    LZ1003.93836.139290120
    LZ503.93806.135990120
    LZ103.93686.135390120
    下载: 导出CSV

    表  2  催化剂的比表面积和元素分析

    Table  2  Elemental analysis and BET surface area of various La2O3-based catalysts

    CatalystLa/Zn molar ratioSBET/(m2·g−1)
    Bulk, from ICPSurface, from XPS
    L3.4
    LZ100104.0107.72.6
    LZ5051.844.12.7
    LZ1010.17.72.6
    1.0Al-LZ1010.011.13.0
    LA105.0
    下载: 导出CSV

    表  3  La2O3基催化剂原位XRD精修结果

    Table  3  In situ XRD refinement results of the La2O3-based catalysts

    CatalystLattice parameterExpansion rate
    25 ℃750 ℃
    a = bca = bca = b /%c /%
    L3.93946.13953.94016.14700.020.12
    LZ1003.93836.13923.93896.15610.040.28
    LZ503.93806.13593.94046.15890.060.38
    LZ103.93686.13533.93776.16220.020.44
    1.0Al-LZ103.93816.13823.94016.15820.050.33
    下载: 导出CSV

    表  4  催化剂上H2-TPR定量分析

    Table  4  H2-TPR analysis results of various catalysts

    CatalystH2 consumption / (mmol·g−1)Oβ/Oα
    OαOβOβ + Oα
    L-100 ℃0.0160.0030.0190.202
    L-750 ℃0.0640.0640.1280.992
    LZ10-750 °C0.0650.0860.1511.322
    LZ50-750 °C0.0570.1110.1681.947
    LZ100-750 °C0.0560.1160.1722.052
    1.0Al-LZ10-750 °C0.0660.1500.2162.268
    LA10-750 °C0.0780.0860.1641.093
    a:before H2-TPR, the catalyst samples were pretreated under 50%O2-50%N2 (40 mL·min−1) at 750 °C or at 100 °C, as denoted after the catalyst label
    下载: 导出CSV

    表  5  样品的XPS O 1s拟合结果

    Table  5  Contents of various oxygen species in the La2O3-based catalysts derived from O 1 s XPS spectra

    CatalystO2−O$ {\rm{CO}}^{2-}_{3} $$ {\rm{O}}^{-}_{2} $O/$ {\rm{O}}^{-}_{2} $
    BE/eVx/%BE/eVx/%BE/eVx/%BE/eVx/%
    L528.720.78 530.816.86 531.753.61 533.08.75 1.9
    LZ10528.825.31530.820.63531.744.33533.09.732.1
    LZ50528.826.69530.813.15531.756.86532.93.304.0
    LZ100528.827.56530.812.31531.757.29532.72.844.3
    1.0Al-LZ10529.028.98 530.812.75 531.755.61 533.02.66 4.8
    下载: 导出CSV

    表  6  800 ℃下的OCM催化性能

    Table  6  Performance of various La2O3-based catalysts in OCM at 800 °C

    CatalystCH4 Conversion /%O2 Conversion /%Selectivity /%C2H4/C2H6
    C2+COCO2
    L 25.4 99.9 49.8 11.2 39.0 1.4
    LZ10 25.2 99.9 51.3 11.0 37.7 1.3
    LZ50 25.0 100.0 53.6 10.5 35.9 1.5
    LZ100 26.0 99.9 53.8 10.4 35.8 1.5
    1.0Al-LZ10 25.3 99.9 55.0 7.5 37.5 1.4
    LA10 24.5 99.7 50.7 11.2 38.1 1.5
    ZnO 12.0 80.1 29.5 8.7 61.8 0.5
    下载: 导出CSV
  • [1] 张宝幸. 甲烷直接转化研究进展[J]. 石油化工,2017,46(4):503−509. doi: 10.3969/j.issn.1000-8144.2017.04.019

    ZHANG Bao-xing. Progresses in the research for direct conversion of methane[J]. Petrochem Tochnol,2017,46(4):503−509. doi: 10.3969/j.issn.1000-8144.2017.04.019
    [2] 申文杰. 低温甲烷氧化偶联制乙烯[J]. 物理化学学报,2017,33(12):2321−2322. doi: 10.3866/PKU.WHXB201706231

    SHEN Wen-jie. Low-temperature oxidative coupling of methane to ethylene[J]. Acta Phys-Chim Sin,2017,33(12):2321−2322. doi: 10.3866/PKU.WHXB201706231
    [3] OLIVOS-SUAREZ A I, SZECSENYI A, HENSEN E J M, RUIZ-MARTINEZ J, PIDKO E A, GASCON J. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities[J]. ACS Catal,2016,6(5):2965−2981. doi: 10.1021/acscatal.6b00428
    [4] LUO L F, YOU R, LIU Y M, YANG J Z, ZHU Y N, WEN W, PAN Y, QI F, HUANG W X. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane[J]. ACS Catal,2019,9(3):2514−2520. doi: 10.1021/acscatal.8b04728
    [5] CHUA Y T, MOHAMED A R, BHATIA S. Oxidative coupling of methane for the production of ethylene over sodium-tungsten-manganese-supported-silica catalyst (Na-W-Mn/SiO2)[J]. Appl Cataly A: Gen,2008,343(1):142−148.
    [6] VOSKRESENSKAYA E N, ROGULEVA V G, ANSHITS A G. Oxidant activation over structural defects of oxide catalysts in oxidative methane coupling[J]. Catal Rev-Sci Eng,1995,37(1):101−143. doi: 10.1080/01614949508007092
    [7] 李鹏, 张明森, 武洁花. 甲烷氧化偶联制乙烯机理和动力学研究进展[J]. 石油化工,2018,47(9):1005−1012. doi: 10.3969/j.issn.1000-8144.2018.09.017

    LI Peng, ZHANG Ming-sen, WU Jie-hua. Progresses in the mechanism and kinetics of methane oxidation coupling[J]. Petrochem Tochnol,2018,47(9):1005−1012. doi: 10.3969/j.issn.1000-8144.2018.09.017
    [8] PALMER M S, NEUROCK M, OLKEN M M. Periodic density functional theory study of methane activation over La2O3: Activity of O2−, O, O22−, oxygen point defect, and Sr2+-doped surface sites[J]. J Am Chem Soc,2002,124(28):8452−8461. doi: 10.1021/ja0121235
    [9] GAMBO Y, JALIL A A, TRIWAHYONO S, ABDULRASHEED A A. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review[J]. J Ind Eng Chem,2018,59:218−229. doi: 10.1016/j.jiec.2017.10.027
    [10] WANG S B, LI S G, DIXON D A. Mechanism of selective and complete oxidation in La2O3-catalyzed oxidative coupling of methane[J]. Catal Sci Technol,2020,10(8):2602−2614. doi: 10.1039/D0CY00141D
    [11] BORCHERT H, BAERNS M. The effect of oxygen-anion conductivity of metal-oxide doped lanthanum oxide catalysts on hydrocarbon selectivity in the oxidative coupling of methane[J]. J Catal,1997,168(2):315−320. doi: 10.1006/jcat.1997.1662
    [12] KWAPIEN K, PAIER J, SAUER J, GESKE M, ZAVYALOVA U, HORN R, SCHWACH P, TRUNSCHKE A, SCHLOEGL R. Sites for methane activation on lithium-doped magnesium oxide surfaces[J]. Angew Chem Int Ed,2014,53(33):8774−8778. doi: 10.1002/anie.201310632
    [13] VIGGIANO A A, MORRIS R A, MILLER T M, FRIEDMAN J F, MENEDEZBARRETO M, PAULSON J F, MICHELS H H, HOBBS R H. Reaction on the O+CH4 potential energy surface: Dependence on translational and internal energy and on isotopic composition, 93-1313 K[J]. J Chem Phys,1997,106(20):8455−8463. doi: 10.1063/1.473904
    [14] KATHREIN H, FREUND F, NAGY J. O--ions and their relation to traces of H2O and CO2 in magnesium-oxide an electron-paramagnetic-res study[J]. J Phys Chem Solids,1984,45(11-1):1155−1163.
    [15] SONG J J, SUN Y H, BA R B, HUANG S S, ZHAO Y H, ZHANG J, SUN Y H, ZHU Y. Monodisperse Sr-La2O3 hybrid nanofibers for oxidative coupling of methane to synthesize C2 hydrocarbons[J]. Nanoscale,2015,7(6):2260−2264. doi: 10.1039/C4NR06660J
    [16] 丛林娜, 赵永慧, 李圣刚, 孙予罕. 锶掺杂对氧化镧催化甲烷氧化偶联反应的影响[J]. 催化学报,2017,38(5):899−907. doi: 10.1016/S1872-2067(17)62823-7

    CONG Lin-na, ZHAO Yong-hui, LI Sheng-gang, SUN Yu-han. Sr-doping effects on La2O3 catalyst for oxidative coupling of methane[J]. Chin J Catal,2017,38(5):899−907. doi: 10.1016/S1872-2067(17)62823-7
    [17] WANG Z Q, WANG D, GONG X Q. Strategies to improve the activity while maintaining the selectivity of oxidative coupling of methane at La2O3: A density functional theory study[J]. ACS Catal,2020,10(1):586−594. doi: 10.1021/acscatal.9b03066
    [18] XU M T, LUNSFORD J H. Effect of temperature on methyl radical generation over Sr/La2O3 catalysts[J]. Catal Lett,1991,11(3/6):295−300. doi: 10.1007/BF00764320
    [19] FERREIRA V J, TAVARES P, FIGUEIREDO J L, FARIA J L. Ce-doped La2O3 based catalyst for the oxidative coupling of methane[J]. Catal Commun,2013,42:50−53. doi: 10.1016/j.catcom.2013.07.035
    [20] WU X Y, FANG Z, PAN H, ZHENG Y F, JIANG D H, NI J, LI X N. Active oxygen species on Mg-La mixed oxides: the effect of Mg and La oxide interactions[J]. Catal Sci Technol,2017,7(4):797−801. doi: 10.1039/C6CY02286C
    [21] SEKINE Y, TANAKA K, MATSUKATA M, KIKUCHI E. Oxidative coupling of methane on Fe-doped La2O3 catalyst[J]. Energy Fuels,2009,23(1/2):613−616.
    [22] CHOUDHARY V R, MULLA S A R, UPHADE B S. Oxidative coupling of methane over SrO deposited on different commercial supports precoated with La2O3[J]. Ind Eng Chem Res,1998,37(6):2142−2147. doi: 10.1021/ie9706018
    [23] SOLLIER B M, GOMEZ L E, BOIX A V, MIRO E E. Oxidative coupling of methane on Sr/La2O3 catalysts: Improving the catalytic performance using cordierite monoliths and ceramic foams as structured substrates[J]. Appl Catal A: Gen,2017,532:65−76. doi: 10.1016/j.apcata.2016.12.018
    [24] MATRAS D, JACQUES S D M, POULSTON S, GROSJEAN N, BOSCH C E, ROLLINS B, Wright J. Operando and postreaction diffraction imaging of the La-Sr/CaO catalyst in the oxidative coupling of methane reaction[J]. J Phys Chem C,2019,123(3):1751−1760. doi: 10.1021/acs.jpcc.8b09018
    [25] MATRAS D, JACQUES S D M, GODINI H R, KHADIVI M, DRNEC J, POULAIN A, CERNIK R J, BEALE A M. Real-time operando diffraction imaging of La-Sr/Cao during the oxidative coupling of methane[J]. J Phys Chem C,2018,122(4):2221−2230. doi: 10.1021/acs.jpcc.7b11573
    [26] LI B, METIU H. DFT Studies of oxygen vacancies on undoped and doped La2O3 surfaces[J]. J Phys Chem C,2010,114(28):12234−12244. doi: 10.1021/jp103604b
    [27] LI B, METIU H. Dissociation of methane on La2O3 surfaces doped with Cu, Mg, or Zn[J]. J Phys Chem C,2011,115(37):18239−18246. doi: 10.1021/jp2049603
    [28] LEE G, KIM I, YANG I, HA J M, NA H B, JUNG J C. Effects of the preparation method on the crystallinity and catalytic activity of LaAlO3 perovskites for oxidative coupling of methane[J]. Appl Surf Sci,2018,429:55−61. doi: 10.1016/j.apsusc.2017.08.092
    [29] DAWSON J A, TANAKAA I. Local structure and energetics of Pr- and La-doped SrTiO3 grain boundaries and the influence on core-shell structure formation[J]. J Phys Chem C,2014,118(44):25765−25778. doi: 10.1021/jp508444k
    [30] JIANG T, SONG J J, HUO M F, YANG N T, LIU J W, ZHANG J, SUN Y H, ZHU Y. La2O3 catalysts with diverse spatial dimensionality for oxidative coupling of methane to produce ethylene and ethane[J]. RSC Adv,2016,6(41):34872−34876. doi: 10.1039/C6RA01805J
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  21
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-12
  • 修回日期:  2021-04-21
  • 网络出版日期:  2021-05-28

目录

    /

    返回文章
    返回