留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MnOx/ZrO2-Cr2O3催化剂的结构及催化苯甲酸甲酯加氢性能

赵雨 王淇锋 宋冰洁 孙培永 张胜红 姚志龙

赵雨, 王淇锋, 宋冰洁, 孙培永, 张胜红, 姚志龙. MnOx/ZrO2-Cr2O3催化剂的结构及催化苯甲酸甲酯加氢性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60104-4
引用本文: 赵雨, 王淇锋, 宋冰洁, 孙培永, 张胜红, 姚志龙. MnOx/ZrO2-Cr2O3催化剂的结构及催化苯甲酸甲酯加氢性能[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60104-4
ZHAO Yu, WANG Qi-feng, SONG Bing-jie, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. The Structure and Hydrogenation Performance for Methyl Benzoate of MnOx/ZrO2-Cr2O3 Catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60104-4
Citation: ZHAO Yu, WANG Qi-feng, SONG Bing-jie, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. The Structure and Hydrogenation Performance for Methyl Benzoate of MnOx/ZrO2-Cr2O3 Catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60104-4

MnOx/ZrO2-Cr2O3催化剂的结构及催化苯甲酸甲酯加氢性能

doi: 10.1016/S1872-5813(21)60104-4
详细信息
    作者简介:

    赵雨:19801369970@163.com

    通讯作者:

    E-mail: yaozl@bipt.edu.cn

  • 中图分类号: O643

The Structure and Hydrogenation Performance for Methyl Benzoate of MnOx/ZrO2-Cr2O3 Catalyst

  • 摘要: 采用并流共沉淀和浸渍法制备了MnOx/ZrO2-Cr2O3催化剂。利用X射线衍射(XRD)、N2物理吸附(BET)、氢气程序还原(H2-TPR)、X射线光电子能谱(XPS)等手段对催化剂的结构和表面性质进行了表征。结果表明,Cr的引入导致ZrO2晶型由m-ZrO2t-ZrO2转变,随着Cr含量的增加,ZrO2-Cr2O3复合氧化物的比表面积逐渐增大,平均孔径逐渐降低,孔结构也发生变化;Mn的引入会造成ZrO2-Cr2O3复合氧化物中Cr的迁移,同时也有利于ZrO2晶型由m-ZrO2t-ZrO2转变,从而引起催化剂比表面积、孔结构的变化;含4% Mn和2.5% Cr的MnOx/ZrO2-Cr2O3催化剂对苯甲酸甲酯加氢反应的单程转化率和选择性分别达到93.86%和86.05%。
  • 图  1  ZrO2-Cr2O3复合氧化物的XRD谱图

    Figure  1  XRD patterns of ZrO2-Cr2O3

    a: 0Cr; b: 2.5Cr; c: 5.0Cr; d: 7.5Cr; e: 10Cr

    图  2  ZrO2-Cr2O3复合氧化物的N2吸附-脱附曲线

    Figure  2  N2 adsorption-desorption isotherms of ZrO2-Cr2O3

    (a): 0Cr; (b): 2.5−5.0Cr; (c): 7.5Cr; (d): 10Cr

    图  3  ZrO2-Cr2O3复合氧化物的H2-TPR谱图

    Figure  3  H2-TPR profiles of ZrO2-Cr2O3

    a: 0Cr; b: 2.5Cr; c: 5.0Cr; d: 7.5Cr; e: 10Cr

    图  4  8MnOx/ZrO2-aCr2O3 (a) 和 bMnOx/ZrO2-2.5Cr2O3(b)的XRD谱图

    Figure  4  XRD patterns of 8MnOx/ZrO2-aCr2O3 (a) catalysts and bMnOx/ZrO2-2.5Cr2O3 (b) catalysts

    a: 2.5Cr; b: 5.0Cr; c: 7.5Cr; d: 10Cr; e: 0Mn; f: 4Mn; g: 6Mn; h: 10Mn; i: 12Mn

    图  5  MnOx/ZrO2-Cr2O3的孔径分布曲线

    Figure  5  Pore size distribution curve of MnOx/ZrO2-Cr2O3

    a: 2.5Cr; b: 5.0Cr; c: 7.5Cr; d: 10Cr

    图  6  bMnOx/ZrO2-aCr2O3的H2-TPR谱图

    Figure  6  H2-TPR profiles of bMnOx/ZrO2-aCr2O3 catalysts

    a: 2.5Cr; b: 5.0Cr; c: 7.5Cr; d: 10Cr

    图  7  8MnOx/ZrO2-2.5Cr2O3的Mn 2p窄谱图

    Figure  7  Mn 2p narrow spectra of 8MnOx/ZrO2-2.5Cr2O3 catalysts

    图  8  Mn负载量对bMnOx/ZrO2-2.5Cr2O3催化剂的加氢性能影响

    Figure  8  Effect of Mn loading on the performance of bMnOx/ZrO2-2.5Cr2O3 catalysts in the hydrogenation

    表  1  ZrO2-Cr2O3复合氧化物的孔径及比表面积

    Table  1  Textual properties of ZrO2-Cr2O3

    Cr content w/%SBET/(m2·g−1)v/(cm3·g−1)d/nm
    028.60.09713.7
    2.586.10.2019.3
    5.0109.10.1947.1
    7.5144.10.1825.0
    10135.10.1524.5
    下载: 导出CSV

    表  2  bMnOx/ZrO2-aCr2O3的孔径及比表面积

    Table  2  Textual properties of bMnOx/ZrO2-aCr2O3

    Mn content
    w/%
    Cr content
    w/%
    SBET/(m2·g−1)v /(cm3·g−1)d
    /nm
    0 2.5 86.1 0.20 9.3
    4 2.5 82.1 0.18 8.6
    8 2.5 72.2 0.16 8.9
    10 2.5 63.0 0.14 8.9
    8 2.5 72.2 0.16 8.9
    8 5.0 84.9 0.14 7.1
    8 10 87.6 0.12 5.3
    下载: 导出CSV

    表  3  bMn/2.5Cr-Zr的Mn元素结合能

    Table  3  Binding energy of Mn 2p3/2 determined from XPS

    SampleMn 2p3/2 /eVMn 2p1/2 /eVΔEB
    /eV
    Relative ratio of Mn oxide w/%
    MnO2Mn2O3Mn3O4
    8Mn/
    2.5Cr-Zr
    641.6653.311.737.3736.0426.58
    下载: 导出CSV

    表  4  bMnOx/ZrO2-aCr2O3催化剂的苯甲酸甲酯加氢性能

    Table  4  Performance of bMnOx/ZrO2-aCr2O3 catalysts

    Mn content w/%Cr content w/%Methyl benzoate x/%s/%Selectivity s /%
    benzaldehydebenzyl alcoholtoluenebenzyl benzoate
    0019.8481.2948.4332.873.8511.60
    02.557.2767.2341.9225.3122.375.68
    05.092.6852.1227.4524.6738.663.11
    42.593.8686.0536.1449.918.494.21
    82.589.4787.7140.8946.816.914.29
    85.087.6683.3238.9944.3310.474.47
    81086.7682.4440.0442.4012.004.04
    102.588.4387.5438.8248.726.524.56
    *reaction conditions: t = 390 ℃, p = 1.0 MPa, weight hourly space velocity of methyl benzoate = 0.5 h−1, n(H2)/ n(MB) = 10
    下载: 导出CSV
  • [1] NURHIKMAH N, CAHYANA A H, LIANDI A R. Utilization of cinnamaldehyde for synthesis of nitrogen-containing 2-hydroxy-1, 4-naphthoquinone derivatives as antioxidant agent[M]. Proce 5th Int Symposium Curr Progr in Math and Sci (Iscpms2019). 2020.
    [2] WANG M. Production technology and market of benzaldehyde[J]. Fine Chem Ind Raw Mater Interm,2005,(6):15−18.
    [3] YU Z Y. Synthesis and application of benzaldehyde and its derivatives[J]. Chem Interm,2003,(4):10−11+15.
    [4] YANG S J, XIA J, SUN J T. Synthesis of benzaldehyde 1, 2-propanediol acetal catalyzed by using TiSiW(12)O(40)/TiO2[J]. Chem React Eng Techno,2003,(1):9−13.
    [5] KUNJAPUR A M, YEKATERINA T, PRATHER K L J. Synthesis and accumulation of aromatic aldehydes in an engineered strain of escherichia coli[J]. J Am Chem Soc,2014,136(33):44−54.
    [6] WANG Y, QIAO X. Preparation of benzaldehyde from benzyl chloride by-product mixture[J]. Fine Chem Interm,2005,(1):44−46+49.
    [7] DENG C S, XU M X, DONG Z, LI L, YANG J Y, GUO X F, PENG L M, XUE N H, ZHU Y, DING W P. Exclusively catalytic oxidation of toluene to benzaldehyde in an O/W emulsion stabilized by hexadecylphosphate acid terminated mixed-oxide nanoparticles[J]. Chin J Catal,2020,41(2):341−349. doi: 10.1016/S1872-2067(19)63417-0
    [8] ZHANG W X, SHAO X G, ZHANG H C, LIN X Q. Review on the electrosynthesis of benzaldehyde and its derivatives[J]. Chem Ind Eng Prog,2000,(4):24−27.
    [9] LI G X, YU H, TENG Z J, LU Y S, TANG Q. Oxidation of benzyl alcohol to benzaldehyde over keggin type multicomponent heteropoly compounds[J]. Chem Ind Eng Prog,2010,29(1):71−75.
    [10] BAI Z J, SHEN S, CHEN L, QU Z T, YIN S F. Recent progress of selective toluene oxidation via heterogeneous photocatalyst[J]. Sci Sin Chim,2020,50(2):223−234. doi: 10.1360/SSC-2019-0144
    [11] WILDE C A, RYABENKOVA Y L, FIRTH I M, PRATT L, RAILTON J, BRAVO S M, SANON, CUMPSON P J, COATES P D, LIU X, CONTE M. Novel rhodium on carbon catalysts for the oxidation of benzyl alcohol to benzaldehyde: A study of the modification of metal/support interactions by acid pre-treatments[J]. Appl Catal A: Gen,2019,570:271−282. doi: 10.1016/j.apcata.2018.11.006
    [12] MAHMOUD N, MOJTABA B, HIRBOD K. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes[J]. J Colloid Interf Sci,2016,465:271−278. doi: 10.1016/j.jcis.2015.11.074
    [13] LIU J H, WANG F, GU Z G, XU X L. Vanadium phosphorus oxide catalyst modified by silver doping for mild oxidation of styrene to benzaldehyde[J]. J Chem Eng,2009,151(1):319−323.
    [14] 张岳娇. 苯甲酸甲酯加氢合成苯甲醛催化剂的制备研究[D]. 北京: 北京化工大学, 2017.

    ZHANG Yue-jiao. Study on catalysts for methyl benzoate hydrogenation[D]. Beijing: Beijing University of Chemical Technology, 2017.
    [15] CHEN X H, WANG Z Y, DALY H, MORGAN R, MANYAR H, BYRNE C, WALTON A S, TAYLOR S. F R, SMITH M, BURCH R, HU P J, HARDACRE C. Hydrogenation of benzoic acid to benzyl alcohol over Pt/SnO2[J]. Appl Catal A: Gen,2020,593:117420.
    [16] DE LANGE M W, VAN OMMEN J G, LEFFERTS L. Deoxygenation of benzoic acid on metal oxides[J]. Appl Catal A: Gen,2002,231(1):17−26.
    [17] YOKOYAMA T, SETOYAMA T, FUJITA N, MAKI T. Novel direct hydrogenation process of aromatic carboxylic acids to the corresponding aldehydes with zirconia catalyst[J]. Appl Catal A: Gen,1992,88(2):149−161. doi: 10.1016/0926-860X(92)80212-U
    [18] MAKI T, YOKOYAMA T. Process for producing aromatic aldehydes: US, 4613700A[P]. 1986-09-23.
    [19] LV C X. The study of crystallization proeess of ZrO2[D]. Lanzhou: Lanzhou University of Technology, 2010.
    [20] 刘森, 黄锐, 孙培永, 张胜红, 姚志龙. Mn/Ti-Zr复合氧化物催化苯甲酸甲酯选择性加氢[J]. 精细化工,2021,38(4):782−789.

    LIU Sen, HUANG rui, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. Selective hydrogenation of methyl benzoate catalyzed by Mn/Ti-Zr mixed oxides[J]. Fine Chem,2021,38(4):782−789.
    [21] IWANOWSKI R J, HEINONEN M H, PASZKOWICZ W, MINIKAEV R, WITKOWSKA B. X-ray photoelectron study of Sn1−xMnxTe semimagnetic semiconductors[J]. Appl Surf Sci,2006,252(10):3632−3641. doi: 10.1016/j.apsusc.2005.05.056
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  48
  • HTML全文浏览量:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-04-27
  • 网络出版日期:  2021-06-01

目录

    /

    返回文章
    返回