留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

疏水性离子液体对生物油水相馏分中酚类物质的萃取研究

邓晶晶 罗泽军 王储 朱锡锋

邓晶晶, 罗泽军, 王储, 朱锡锋. 疏水性离子液体对生物油水相馏分中酚类物质的萃取研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60108-1
引用本文: 邓晶晶, 罗泽军, 王储, 朱锡锋. 疏水性离子液体对生物油水相馏分中酚类物质的萃取研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60108-1
DENG Jing-jing, LUO Ze-jun, WANG Chu, ZHU Xi-feng. Study on the extraction of phenols from bio-oil aqueous fraction by hydrophobic ionic liquids[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60108-1
Citation: DENG Jing-jing, LUO Ze-jun, WANG Chu, ZHU Xi-feng. Study on the extraction of phenols from bio-oil aqueous fraction by hydrophobic ionic liquids[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60108-1

疏水性离子液体对生物油水相馏分中酚类物质的萃取研究

doi: 10.1016/S1872-5813(21)60108-1
基金项目: 国家重点研发计划(2018YFB1501404)资助
详细信息
    通讯作者:

    E-mail: xfzhu@ustc.edu.cn

  • 中图分类号: TK6

Study on the extraction of phenols from bio-oil aqueous fraction by hydrophobic ionic liquids

Funds: The project was supported by the National Key Research and Development Program of China (2018YFB1501404)
  • 摘要: 选用疏水性离子液体[Bmim][NTf2]作为萃取剂,对生物油水相馏分中的乙酸、苯酚、愈创木酚、4-甲基愈创木酚进行萃取分离研究,探究萃取时间、萃取剂添加量对萃取率的影响,并借助密度泛函理论(DFT)计算,阐明[Bmim][NTf2]与酚类化合物间的相互作用机理。研究结果表明,在最佳萃取条件(mIL/mW = 0.4、萃取时间 = 5 min)下,[Bmim][NTf2]对水相馏分中乙酸、苯酚、愈创木酚、4-甲基愈创木酚的萃取率分别为2.71%、95.41%、92.04%、97.98%,表明[Bmim][NTf2]对水相馏分中的酚类化合物有较好的选择性与较高的萃取率;而DFT计算结果显示,[Bmim][NTf2]与酚类物质间较强的氢键吸引作用以及较弱的范德华作用力在萃取脱酚中起着重要作用。通过碱洗处理即可将[Bmim][NTf2]中的酚类化合物有效除去,实现[Bmim][NTf2]的回收与再次高效萃取。
  • 图  1  生物油水相馏分的GC-MS谱图及其主要化合物

    Figure  1  GC-MS spectra and main compounds of bio-oil water fractions

    图  2  不同质量比下[Bmim][NTf2]的萃取率

    Figure  2  [Bmim][NTf2] extraction efficiency of different mass ratios

    图  3  不同萃取时间下[Bmim] [NTf2]的萃取效率

    Figure  3  [Bmim][NTf2] extraction efficiency of different extraction times

    图  4  苯酚与[Bmim][NTf2]配合物最佳构型下的氢键与相互作用能

    Figure  4  Hydrogen bond and interaction energy in the optimized geometries for the complex of phenol and [Bmim][NTf2]

    图  5  苯酚与[Bmim][NTf2]配合物的RDG等值面图(a)与散点图(b)

    Figure  5  RDG isosurface plot(a) and scatter plot(b) of the complex of phenol and [Bmim][NTf2]

    图  6  [Bmim][NTf2]的重复萃取率

    Figure  6  Repeated extraction efficiency of [Bmim][NTf2]

    图  7  再生[Bmim] [NTf2]的萃取率

    Figure  7  Extraction efficiency of regenerated [Bmim][NTf2]

    图  8  再生[Bmim][NTf2]的 1H NMR谱图

    Figure  8  1H NMR spectrum of regenerated [Bmim][NTf2]

    表  1  生物油蒸馏水相中四种主要化合物的相对含量和绝对含量

    Table  1  Relative content and absolute concentration of four main compounds in bio-oil water fractions

    Main compoundRelative content/%Absolute content/(mg·L−1)
    Acetic acid19.68162623.46
    Phenol19.442674.21
    Guaiacol16.417469.60
    2-methoxy-4-methylphenol10.011721.92
    下载: 导出CSV

    表  2  水相馏分中主要化合物的疏水参数以及溶质自由能GWGIL

    Table  2  Hydrophobicity parameters Log P、solute free energy GW and GIL ofthe main compounds in the water fractions

    CompoundLog PaGW (Hartree)GIL(Hartree)
    Acetic acid−0.17−228.7333−228.7308
    Phenol1.51−306.8856−306.8869
    Guaiacol1.34−421.2100−421.2102
    2-methoxy-4-methylphenol1.88−460.4221−460.4236
    a:表中疏水性参数Log P取自美国环保署与Syracuse研究公司合作开发的EPI软件数据库
    下载: 导出CSV
  • [1] ZHU X F, ZHENG J L, GUO Q X, ZHU Q S. Property, Up-grading and Utilization of Bio-oil from Biomass[J]. Strategic Study CAE,2005,7(9):83−88.
    [2] COLLARD F X, BLIN J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renewable Sustainable Energy Rev,2014,38:594−608. doi: 10.1016/j.rser.2014.06.013
    [3] 秦菲, 崔洪友, 王传波, 王丽红, 易维明. 萃取耦合化学转化法提质生物油油溶相的研究[J]. 燃料化学学报,2014,42(7):805−812.

    QIN Fei, CUI Hong-you, WANG Chuan-bo, WANG Li-hong, YI Wei-ming. Upgrading the oil-soluble fraction of bio-oil by solvent extraction coupling with chemical conversion[J]. J Fuel Chem Technol,2014,42(7):805−812.
    [4] 陈娇娇, 陈冠益, 马文超, 马隆龙, 王铁军, 张琦, 吕微. 生物油模型化合物催化裂化制备芳香烃的实验研究[J]. 燃料化学学报,2013,41(2):183−188. doi: 10.3969/j.issn.0253-2409.2013.02.010

    CHEN Jiao-jiao, CHEN Guan-yi, MA Wen-chao, MA Long-long, WANG Tie-jun, ZHANG Qi, LV Wei. Experimental study of aromatics production from catalytic cracking of bio-oil model compounds[J]. J Fuel Chem Technol,2013,41(2):183−188. doi: 10.3969/j.issn.0253-2409.2013.02.010
    [5] 王誉蓉, 王树荣, 王相宇, 郭祚刚. 不同蒸馏压力下的生物油分子蒸馏分离特性研究[J]. 燃料化学学报,2013,41(2):177−182. doi: 10.3969/j.issn.0253-2409.2013.02.009

    WANG Yu-rong, WANG Shu-rong, WANG Xiang-yu, GUO Zuo-gang. Molecular distillation separation characteristic of bio-oil under different pressures[J]. J Fuel Chem Technol,2013,41(2):177−182. doi: 10.3969/j.issn.0253-2409.2013.02.009
    [6] 孙孟超, 袁鑫华, 罗泽军, 朱锡锋. 蒸馏温度对核桃壳生物油馏分组分分布的影响[J]. 燃料化学学报,2020,48(10):1179−1185. doi: 10.3969/j.issn.0253-2409.2020.10.004

    SUN Meng-chao, YUAN Xin-hua, LUO Ze-jun, ZHU Xi-feng. Influence of heating temperatures on the component distributionof distillates derived from walnut shell bio-oil[J]. J Fuel Chem Technol,2020,48(10):1179−1185. doi: 10.3969/j.issn.0253-2409.2020.10.004
    [7] 李时瑛, 朱谢飞, 张立强, 朱锡锋. 基于不同萃取剂的生物油常压蒸馏研究[J]. 燃料化学学报,2019,47(3):312−317.

    LI Shi-ying, ZHU Xie-fei, ZHANG Li-qing, ZHU Xi-feng. Atmospheric distillation of bio-oil based on different extractants[J]. J Fuel Chem Technol,2019,47(3):312−317.
    [8] ZHENG J L, WEI Q. Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation[J]. Biomass Bioenergy,2011,35(5):1804−1810. doi: 10.1016/j.biombioe.2011.01.006
    [9] BOULLOSA-EIRAS S, LØDENG R, BERGEM H, STOCKER M, HANNEVOLD L, BLEKKANA EA. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts[J]. Catal Today,2014,223:44−53. doi: 10.1016/j.cattod.2013.09.044
    [10] 李美惠, 马文超, 毕亚东, 陈冠益, 陈慧. 减压蒸馏生物油与乙醇在ZSM-5/MCM-41上共催化裂化[J]. 燃料化学学报,2015,43(3):309−314. doi: 10.3969/j.issn.0253-2409.2015.03.008

    LI Mei-hui, MA Wen-chao, BI Ya-dong, CHEN Guan-yi, CHEN Hui. Catalytic co-cracking of reduced pressure distillation of bio-oil and ethanol over ZSM-5/MCM-41[J]. J Fuel Chem Technol,2015,43(3):309−314. doi: 10.3969/j.issn.0253-2409.2015.03.008
    [11] SUN M C, YUAN X H, LUO Z J, ZHU X F. Influence of heating temperatures on the component distribution of distillates derived from walnut shell bio-oil[J]. J Fuel Chem Technol,2020,48(10):1179−1185. doi: 10.1016/S1872-5813(20)30079-7
    [12] FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review[J]. J Hazard Mater,2014,267:194−205. doi: 10.1016/j.jhazmat.2013.12.062
    [13] RAO N N, SINGH J R, MISRA R, NANDY T. Liquid-liquid extraction of phenol from simulated sebacic acid wastewater[J]. J Sci Ind Res,2009,68(9):823−828.
    [14] ZHANG Y, LI Z Y, WANG H Y, XUAN X P, WANG J J. Efficient separation of phenolic compounds from model oil by the formation of choline derivative-based deep eutectic solvents[J]. Sep Purif Technol,2016,163:310−318. doi: 10.1016/j.seppur.2016.03.014
    [15] JI Y A, HOU Y C, REN S H, YAO C F, WU W Z. Separation of phenolic compounds from oil mixtures using environmentally benign biological reagents based on Brønsted acid-Lewis base interaction[J]. Fuel,2019,239:926−934. doi: 10.1016/j.fuel.2018.11.007
    [16] PLECHKOVA N V, SEDDON K R. Applications of ionic liquids in the chemical industry[J]. Chem Soc Rev,2008,37(1):123−150. doi: 10.1039/B006677J
    [17] ZHU G F, CHENG G H, LU T, GAO Z G, WANG L F, LI Q J, FAN J. An ionic liquid functionalized polymer for simultaneous removal of four phenolic pollutants in real environmental samples[J]. J Hazard Mater,2019,373:347−358. doi: 10.1016/j.jhazmat.2019.03.101
    [18] LI X, LUQUE-MORENO L C, OUDENHOVEN S R, OUDENHOVEN S R G, REHMANN L, KERSTEN S R A, SCHUUR B. Aromatics extraction from pyrolytic sugars using ionic liquid to enhance sugar fermentability[J]. Bioresour Technol,2016,216:12−8. doi: 10.1016/j.biortech.2016.05.035
    [19] YAO C F, HOU Y C, REN S H, YAO C F, HOU Y C, REN S H, JI Y A, WU W Z, LIU H. Efficient separation of phenolic compounds from model oils by dual-functionalized ionic liquids[J]. Chem Eng Process,2018,128:216−222. doi: 10.1016/j.cep.2018.04.026
    [20] NG Y S, JAYAKUMAR N S, HASHIM M A. Behavior of hydrophobic ionic liquids as liquid membranes on phenol removal: Experimental study and optimization[J]. Desalination,2011,278(13):250−258. doi: 10.1016/j.desal.2011.05.047
    [21] FAN Y C, CAI D X, ZHANG S L, WANG H Y, GUO K G, ZHANG L, YANG L. Effective removal of nitrogen compounds from model diesel fuel by easy-to-prepare ionic liquids[J]. Sep Purif Technol,2019,222:92−98. doi: 10.1016/j.seppur.2019.04.026
    [22] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465. doi: 10.1002/jcc.21759
    [23] HO J M, KLAMT A, COOTE M L. Comment on the Correct Use of Continuum Solvent Models[J]. J Phys Chem A,2010,114(51):13442−13444. doi: 10.1021/jp107136j
    [24] LU T. Molclus Program[cp]. Version 1.9.9.2, http://www.keinsci.com/research/molclus.html (accessed 12, 2020).
    [25] BURNS L A, VAZQUEZ-MAYAGOITIA A, SUMPTER B G, SHERRILL C D. Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals[J]. J Chem Phys,2011,134(8):25.
    [26] REZAC J, HOBZA P. Benchmark calculations of interaction energies in noncovalent complexes and their applications[J]. Chem Rev,2016,116(9):5038−5071. doi: 10.1021/acs.chemrev.5b00526
    [27] LU T, CHEN F W. Multiwfn: A multifunctional wavefunction analyzer[J]. J Comput Chem,2012,33(5):580−592. doi: 10.1002/jcc.22885
    [28] HUMPHREY W, DALKE A, SCHULTEN K. VMD: Visual molecular dynamics[J]. J Mol Graph,1996,14(1):33−38. doi: 10.1016/0263-7855(96)00018-5
    [29] JOHNSON E R, KEINAN S, MORI-SANCHEZ P, CONTRERAS-GARCIA J, COHEN A J, YANG W T. Revealing Noncovalent Interactions[J]. J Am Chem Soc,2010,132(18):6498−6506. doi: 10.1021/ja100936w
    [30] 郭少聪, 杨启炜, 邢华斌, 张治国, 鲍宗必, 任其龙. 离子液体-分子溶剂复合萃取剂脱除水中酚类化合物[J]. 化工学报,2016,67(7):2851−2856.

    GUO Shao-cong, YANG Qin-wei, XING Hua-bin, ZHANG Zhi-guo, BAO Zong-bi, REN Qi-long. Removal of phenols from aqueous solution by ionic liquid-molecular solvent composite extractant[J]. CIESC Jo,2016,67(7):2851−2856.
    [31] SHIMADA N, SASAKI T, KAWANO T, MARUYAMA A. Rational Design of UCST-type Ureido Copolymers Based on a Hydrophobic Parameter[J]. Biomacromolecules,2018,19(10):4133−4138.
    [32] SAS O G, DOMINGUEZ I, GONZALEZ B, DOMINGUEZ A. Liquid-liquid extraction of phenolic compounds from water using ionic liquids: Literature review and new experimental data using [C2mim]FSI[J]. J Environ Manage,2018,228:475−482. doi: 10.1016/j.jenvman.2018.09.042
    [33] CESARI L, CANABADY-ROCHELLE L, MUTELET F. Extraction of phenolic compounds from aqueous solution using choline bis(trifluoromethylsulfonyl)imide[J]. Fluid Phase Equilib,2017,446:28−35. doi: 10.1016/j.fluid.2017.04.022
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  81
  • HTML全文浏览量:  24
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-04-22
  • 网络出版日期:  2021-05-18

目录

    /

    返回文章
    返回