留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ru/固体碱协同催化生物质糠醇水热氢解的研究

翁育靖 孟士航 朱万胜 张明威 孙琦 张玉龙

翁育靖, 孟士航, 朱万胜, 张明威, 孙琦, 张玉龙. Ru/固体碱协同催化生物质糠醇水热氢解的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60111-1
引用本文: 翁育靖, 孟士航, 朱万胜, 张明威, 孙琦, 张玉龙. Ru/固体碱协同催化生物质糠醇水热氢解的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60111-1
WENG Yu-jing, MENG Shi-hang, ZHU Wan-sheng, ZHANG Ming-wei, SUN Qi, ZHANG Yu-long. Synergistic hydrogenolysis of biomass furfuryl alcohol over Ru/solid base catalysts in hydrothermal reaction environment[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60111-1
Citation: WENG Yu-jing, MENG Shi-hang, ZHU Wan-sheng, ZHANG Ming-wei, SUN Qi, ZHANG Yu-long. Synergistic hydrogenolysis of biomass furfuryl alcohol over Ru/solid base catalysts in hydrothermal reaction environment[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60111-1

Ru/固体碱协同催化生物质糠醇水热氢解的研究

doi: 10.1016/S1872-5813(21)60111-1
详细信息
    通讯作者:

    翁育靖. E-mail:wengyj@hpu.edu.cn;Tel:0391-3987810

  • 中图分类号: O643

Synergistic hydrogenolysis of biomass furfuryl alcohol over Ru/solid base catalysts in hydrothermal reaction environment

More Information
  • 摘要: 糠醇是一种生物质呋喃类平台化合物,其无法从化石原料中提取,通过它可以开辟众多精细化学品和燃料添加剂。其中,四氢糠醇(THFA)是常用的溶剂和重要的化工有机原料,而1,2-戊二醇(1,2-PeD)由于其结构特点被广泛应用于合成杀菌剂丙环唑。本文针对生物质糠醇的结构特点,以水相加氢性能优异的Ru催化剂为切入口,通过在催化剂制备工艺和活化条件、反应条件等方面的调控,探索生物质糠醇的直接氢解联产四氢糠醇和1,2-戊二醇的高效催化体系。研究发现以碱性金属氧化物为载体制备Ru基催化剂可以提高产物中1,2-戊二醇的收率和选择性,其中Ru/MnO2在最佳反应条件下最高可以得到四氢糠醇(53%)和1,2-戊二醇(32%)总收率85%。随后,实验结合了N2 吸附脱附、XRD、XPS等表征手段对反应前后催化剂进行分析并发现反应中催化剂表面会产生碱性基团与活性金属产生协同催化促进反应进行。
  • 图  1  生物质转化为高价值化学品[10]

    Figure  1  Conversion of biomass to high-value chemicals[10]

    图  2  不同载体的催化剂的反应结果(0.5 g糠醇,0.1 g催化剂(Ru含量4wt%),10 mL水,600 r/min,1.5 MPa(氢压),4 h,150 ℃)

    Figure  2  Reaction results of catalysts with different support (Furfuryl alcohol 0.5 g, catalyst 0.1 g (4wt% Ru), H2O 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃)

    图  3  不同溶剂对反应结果的影响(a)0.5 g糠醇,0.1 g 4wt% Ru/MnO2,10 mL溶剂,600 r/min,1.5 MPa(氢压),4 h,150 ℃(b)0.5 g糠醇, 0.1 g 4wt% Ru/MgO, 10 mL溶剂,600 r/min,1.5 MPa(氢压),4 h,150 ℃

    Figure  3  Effects of different solvents on the reaction results (a): Furfuryl alcohol 0.5 g, 4wt% Ru/MnO2 0.1 g, H2O 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃. (b): Furfuryl alcohol 0.5 g, 4wt% Ru/MgO 0.1 g, solvent 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃

    图  4  (a)不同糠醇原料浓度(0.1 g/0.2 g/0.5 g/1 g糠醇,0.1 g 4wt% Ru/MnO2,10 ml水,600 r/min,1.5 MPa(氢压),4 h,150 ℃),(b)不同原料对反应的影响(0.5 g糠醇/糠醛,0.1 g 4wt% Ru/MnO2,10 mL水,600 r/min,1.5 MPa,4 h,150 ℃)(c)产物分布和反应时间的关联图(0.5 g 糠醇,0.1 g 4wt% Ru/MnO2, 10 mL水,600 r/min,1.5 MPa,150 ℃),(d)催化剂稳定性测试。(0.5 g糠醇,0.1 g 4wt% Ru/MnO2,10 mL水,600 r/min,1.5 MPa(氢压),4 h,150 ℃)

    Figure  4  (a) Different raw material concentrations (Furfuryl alcohol 0.5/0.2/0.1/1 g, 4wt% Ru/MnO2 0.1 g, H2O 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃), (b) different raw material on the reaction (Furfuryl alcohol/Furfural 0.5 g, 4wt% Ru/MnO2 0.1 g, H2O 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃), (c) products distribution at different reaction time (Furfuryl alcohol 0.5 g, 4wt% Ru/MnO2 0.1 g, H2O 10 mL, 600 r/min, 1.5 MPa (hydrogen pressure), 150 ℃) and (d) Catalyst stability test ((Furfuryl alcohol 0.5 g, 4wt% Ru/MnO2 0.1 g, H2O 10 ml, 600 r/min, 1.5 MPa (hydrogen pressure), 4 h, 150 ℃)

    图  5  (a)不同Ru负载量催化剂对反应的影响(0.5 g糠醇,0.1 g Ru/MnO2,10 mL溶剂,600 r/min,1.5 MPa(氢压),4 h,150 ℃);(b)还原温度对催化剂的影响(0.1 g Ru/MnO2,10 mL溶剂,600 r/min,1.5 MPa(氢压),4 h,150 ℃)

    Figure  5  Effect of different Ru loading catalysts on the reaction (Furfuryl alcohol/Furfural 0.5 g, 4wt% / 2wt% Ru/MnO2 0.1 g, H2O 10 ml, 600 r/min, 1.5 MPa (H2), 4 h, 150 ℃.);(b) Effect of reduction conditions on product distribution (Ru/MnO2, 10 ml water,600 r/min, 1.5 MPa(H2),4 h, 150 ℃)

    图  6  (a)Mg基催化剂和(b)Mn基催化剂的XRD分析结果

    Figure  6  The XRD pattern of (a) Mg-based catalyst and (b) Mn-based catalyst

    图  7  Mn基催化剂N2吸附脱附图

    Figure  7  Mn-based catalyst N2 adsorption desorption

    图  8  Mn基催化剂未还原、还原和反应残渣中O(a)和Mn(b,c)元素的XPS分析能谱

    Figure  8  XPS spectra of Mn based series samples (a) O 1s, (b) Mn 2p and (c) Mn 3s

    表  1  催化剂的比表面积、孔容、孔径

    Table  1  Catalyst specific surface area, pore volume, pore size

    Catalyst (4wt%)Specific surface area (m2·g−1)Pore volume (cm3·g−1)Average pore size (nm)
    Ru/MnO2
    (Residue)
    41.10.0763.295
    Ru/MnO2
    (Reduced)
    17.20.0834.487
    下载: 导出CSV
  • [1] 曾平, 魏盼中, 张浴沂. 1,2-戊二醇的合成及在个人护理品中的应用进展[J]. 精细与专用化学品,2017,25(04):3402−12.

    ZENG Ping, WEI Pan-zhong, ZHANG Yu-yi. Progress on synthesis of 1,2-pentanediol and its application in personal care[J]. Fine and Specialty Chemicals,2017,25(04):3402−12.
    [2] ZHANG B, ZHU Y L, DING G Q, ZHENG H Y, LI Y W. Selective conversion of furfuryl alcohol to 1,2-pentanediol over a Ru/MnOx catalyst in aqueous phase[J]. Green Chem,2012,14(12):3402. doi: 10.1039/c2gc36270h
    [3] 罗岩, 徐保明, 汤国亮, 陈坤. 丙环唑中间体1,2-戊二醇的合成进展[J]. 农药,2010,49(3):161−163. doi: 10.3969/j.issn.1006-0413.2010.03.002

    LUO Yan, Xu Bao-ming, TANG Guo-liang, CHEN, Kun. Progress for the Synthesis of propiconazole intermediate 1,2-pentanediol[J]. AGROCHEMICALS,2010,49(3):161−163. doi: 10.3969/j.issn.1006-0413.2010.03.002
    [4] 李鹏, 李会芹, 孔斌, 孙绪兵, 冯宝艳. 杀菌剂丙环唑的研制与开发[J]. 农药科学与管理,2004,(8):27−29. doi: 10.3969/j.issn.1002-5480.2004.08.011

    LI Peng, LI Hui-qin, KONG Bin, KONG Xu-bing, FENG Bao-yan. Study and development of propiconazole[J]. Pesticide Science and Administration,2004,(8):27−29. doi: 10.3969/j.issn.1002-5480.2004.08.011
    [5] 翁羽飞. 1-戊烯氧化反应合成1,2-戊二醇工艺概述[J]. 石油化工技术与经济,2016,32(1):58−62. doi: 10.3969/j.issn.1674-1099.2016.01.013

    WENG Yu-fei. Review of synthetic process of 1,2-pentanediol though oxidation of 1-pentene[J]. Technology & Economics in Petrochemicals,2016,32(1):58−62. doi: 10.3969/j.issn.1674-1099.2016.01.013
    [6] 郑修新, 蒋志魁, 孙国方, 费亚南, 张耀日, 张丽娟. 糠醇加氢制1,2-戊二醇催化剂的制备及性能研究[J]. 无机盐工业,2020,52(6):96−100.

    ZHENG Xiu-xin, JIANG Zhi-kui, SUN Guo-fang, FEI Ya-nan, ZHANG Yao-ri, ZHANG Li-juan. Study on preparation and properties of 1,2-pentanediol catalyst byhydrogenation of furfuryl alcohol[J]. Inorganic Chemicals Industry,2020,52(6):96−100.
    [7] 姚倩, 徐禄江, 张颖. 催化快速热解生物质制备高附加值化学品研究进展[J]. 林产化学与工业,2015,35(4):138−144. doi: 10.3969/j.issn.0253-2417.2015.04.022

    YAO Qian, XU Lu-jiang, ZHANG Ying. Production of high value-added chemicals by catalytic fast pyrolysis of biomass[J]. Chem Ind Forest Prod,2015,35(4):138−144. doi: 10.3969/j.issn.0253-2417.2015.04.022
    [8] 王琼, 王闻, 亓伟, 余强, 谭雪松, 庄新姝, 袁振宏, 王忠铭. 木质纤维素酸催化制备糠醛的工艺及机理研究进展[J]. 农业工程学报,2017,33(15):272−282. doi: 10.11975/j.issn.1002-6819.2017.15.035

    WANG Qiong, WANG Wen, QI Wei, YU Qiang, TAN Xue-song, ZHUANG Xin-shu, YUAN Zhen-hong, WANG Zhong-ming. Progress on technologies and mechanism of furfural production from lignocellulose catalyzed by acids[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(15):272−282. doi: 10.11975/j.issn.1002-6819.2017.15.035
    [9] 关江龙, 孙绍晖, 孙培勤, 陈俊武. 由糠醛生产高附加值化学品和运输燃料的最新进展[J]. 可再生能源,2013,31(8):75−81.

    GUAN Jiang-long, SUN Shao-hui, SUN Pei-qin, CHEN Jun-wu. Review on production of high-value chemicals and transportation fuels from furfural[J]. Renewable Energy Resource,2013,31(8):75−81.
    [10] 樊冬娜, 刘晓然, 王喜成, 于奕峰, 陈爱兵. 生物基糠醛催化转化制备戊二醇的研究进展[J]. 化工进展,2018,37(3):938−946.

    FAN Dong-na, LIU Xiao-ran, WANG Xi-cheng, YU Yi-feng, CHEN Ai-bing. Catalytic conversion of biomass-derived furfural into pentanediols[J]. Prog Chem,2018,37(3):938−946.
    [11] BYUN J, HAN J. An integrated strategy for catalytic co-production of jet fuel range alkenes, tetrahydrofurfuryl alcohol, and 1,2-pentanediol from lignocellulosic biomass[J]. Green Chem,2017,19(21):5214−29. doi: 10.1039/C7GC02368E
    [12] CHEN S, WOJCIESZAK R, DUMEIGNIL F, MARCEAU E, ROYER S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chem Rev,2018,118(22):11023−11117. doi: 10.1021/acs.chemrev.8b00134
    [13] GÖTZ D, LUCAS M, CLAUS P. C−O bond hydrogenolysis vs. C=C group hydrogenation of furfuryl alcohol: towards sustainable synthesis of 1,2-pentanediol[J]. React Chem Eng,2016,1(2):161−164. doi: 10.1039/C5RE00026B
    [14] KOSO S, UEDA N, SHINMI Y, OKUMURA K, KIZUKA T, TOMISHIGE K. Promoting effect of Mo on the hydrogenolysis of tetrahydrofurfuryl alcohol to 1,5-pentanediol over Rh/SiO2[J]. J Catal,2009,267(1):89−92. doi: 10.1016/j.jcat.2009.07.010
    [15] LIU F, LIU Q Y, XU J M, LI L, CUI Y T, LANG R, LI L, SU Y, MIAO S, SUN H, QIAO B T, WANG A Q, JEROME F, ZHANG TAO. Catalytic cascade conversion of furfural to 1,4-pentanediol in a single reactor[J]. Green Chem,2018,20(8):1770−1776. doi: 10.1039/C8GC00039E
    [16] 匡碧锋, 江婷, 余雅玲, 仇松柏, 秦延林, 方岩雄, 王铁军. 生物质催化转化制备1,5-戊二醇和1,6-己二醇研究进展[J]. 精细化工,2019,36(5):781−785.

    KUANG Bi-feng, JIANG Ting, YU Ya-ling, QIU Song-bai, QIN Yan-lin, FANG Yan-xiong, WANG Tie-jun. Research progress on hydrogenolysis of biomass to 1,5-pentanediol and 1,6-hexanediol[J]. Fine Chem,2019,36(5):781−785.
    [17] 高芳芳, 陈静, 黄志威, 夏春谷. 生物质基呋喃衍生物选择氢解制备戊二醇和己二醇研究进展[J]. 分子催化,2018,32(3):276−293.

    GAO Fang-fang, CHEN Jing, HUANG Zhi-wei, XIA Chun-gu. Recent advances in the selective hydrogenolysis of biomass-based furan derivatives to pentanediols and hexanediol[J]. J Mol Catal,2018,32(3):276−293.
    [18] WIJAYA H W, SATO T, TANGE H, HARA T, ICHIKUNI N, SHIMAZU S. Hydrogenolysis of furfural into 1,5-pentanediol by employing Ni-M (M = Y or La) composite catalysts[J]. Chem Lett,2017,46(5):744−746. doi: 10.1246/cl.170129
    [19] WIJAYA H W, KOJIMA T, HARA T, ICHIKUNI N, SHIMAZU S. Synthesis of 1,5-pentanediol by hydrogenolysis of furfuryl alcohol over Ni-Y2O3 composite catalyst[J]. ChemCatChem,2017,9(14):2869−2874. doi: 10.1002/cctc.201700066
    [20] HUANG K F, BRENTZEL Z J, BARNETT K J, DUMESIC J A, HUBER G W, MARAVELIAS C T. Conversion of furfural to 1,5-pentanediol: process synthesis and analysis[J]. Acs Sustain Chem Eng,2017,5(6):4699−706. doi: 10.1021/acssuschemeng.7b00059
    [21] 薛家浩, 毛微, 赵德智, 李芳. 糠醇催化加氢制备1,2-戊二醇的热力学分析[J]. 石油化工,2019,48(1):18−22. doi: 10.3969/j.issn.1000-8144.2019.01.004

    XUE Jia-hao, MAO Wei, ZHAO De-zhi, LI Fang. Thermodynamic analysis of hydrogenation of furfuryl alcohol to 1,2-pentanediol[J]. Petrkchem Techno,2019,48(1):18−22. doi: 10.3969/j.issn.1000-8144.2019.01.004
    [22] LEE J, XU Y, HUBER G W. High-throughput screening of monometallic catalysts for aqueous-phase hydrogenation of biomass-derived oxygenates[J]. Appl Catal B-Environ,2013,140:98−107.
    [23] LIU H L, HUANG Z W, ZHAO D Z, LI F, CUI F, LI X M, XIA C G, CHEN J. Efficient hydrogenolysis of biomass-derived furfuryl alcohol to 1,2-and 1,5-pentanediols over a non-precious Cu-Mg3AlO4.5 bifunctional catalyst[J]. Catal Sci Technol,2016,6(3):668−671. doi: 10.1039/C5CY01442E
    [24] DATE N S, CHIKATE R C, ROH H-S, RODE C V. Bifunctional role of Pd/MMT-K 10 catalyst in direct transformation of furfural to 1,2-pentanediol[J]. Catal Today,2018,309:195−201. doi: 10.1016/j.cattod.2017.08.002
    [25] TONG T, LIU X H, GUO Y, BANIS M N, HU Y F, WANG Y Q. The critical role of CeO2 crystal-plane in controlling Pt chemical states on the hydrogenolysis of furfuryl alcohol to 1,2-pentanediol[J]. J Catal,2018,365:420−428. doi: 10.1016/j.jcat.2018.07.023
    [26] MIZUGAKI T, YAMAKAWA T, NAGATSU Y, MAENO Z, MITSUDOME T, JITSUKAWA K, KANEDA K. Direct transformation of furfural to 1,2-pentanediol using a hydrotalcite-supported platinum nanoparticle catalyst[J]. Acs Sustain Chem Eng,2014,2(10):2243−2247. doi: 10.1021/sc500325g
    [27] KOCH O, KOCKRITZ A, KANT M, MARTIN A, SCHONING A, ARMBRUSTER U, BARTOSZEK M, EVERT S, LANGE B, BIENERT R. Method for producing 1, 2-pentanediol: US, 8921617B2 [P]. 2014-12-30.
    [28] SMITH H A, FUZE J F. Catalytic hydrogenation of furan and substituted furans on platinum[J]. J Am Chem Soc,1949,71:415−419. doi: 10.1021/ja01170a013
    [29] 高芳芳, 刘海龙, 胡勋, 陈静, 黄志威, 夏春谷. Cu-LaCoO3催化剂选择氢解生物质基糠醇制备1,5-和1,2-戊二醇(英文)[J]. 催化学报,2018,39(10):1711−1723+1574. doi: 10.1016/S1872-2067(18)63110-9

    GAO Fang-fang, LIU Hai-long, HU Xun, CHEN Jing, HUANG Zhi-wei, XIA Chun-gu. Selective hydrogenolysis of furfuryl alcohol to 1,5- and 1,2-pentanediol over Cu‐LaCoO3 catalysts with balanced Cu0‐CoO sites[J]. Chinese J Catal,2018,39(10):1711−1723+1574. doi: 10.1016/S1872-2067(18)63110-9
    [30] SULMONETTI T P, HU B, LEE S, AGRAWAL P K, JONES C W. Reduced Cu-Co-Al mixed metal oxides for the ring-opening of furfuryl alcohol to produce renewable diols[J]. Acs Sustain Chem Eng,2017,5(10):8959−8969. doi: 10.1021/acssuschemeng.7b01769
    [31] WENG Y J, QIU S B, WANG C G, CHEN L G, YUAN Z Q, DING M Y, ZHANG Q, MA L L, WANG Tie-jun. Optimization of renewable C5 and C6 alkane production from acidic biomass hydrolysate over Ru/C catalyst[J]. Fuel,2016,170:77−83. doi: 10.1016/j.fuel.2015.12.007
    [32] 仇松柏, 翁育靖, 刘琪英, 马隆龙, 张琦, 王铁军. 乙二醇促进制备高分散的Co/SiO2催化剂及其催化乳酸乙酯转化为1,2-丙二醇的气相加氢活性(英文)[J]. 物理化学学报,2016,32(6):1511−1518. doi: 10.3866/PKU.WHXB201603094

    QIU Song-bai, WENG Yu-jing, LIU Qi-ying, MA Long-long, ZHANG Qi, WANG Tie-jun. Preparation of Highly Dispersed Co/SiO2 Catalyst Using Ethylene Glycol and Its Application in Vapor-Phase Hydrogenolysis of Ethyl Lactate to 1,2-Propanediol[J]. Acta Phys-Chim Sin,2016,32(6):1511−1518. doi: 10.3866/PKU.WHXB201603094
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  49
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-06-09

目录

    /

    返回文章
    返回