留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤灰化过程中砷/硒/铅的释放及矿物的变化规律

李扬 鲁子龙 杨赫 靳立军 胡浩权

李扬, 鲁子龙, 杨赫, 靳立军, 胡浩权. 煤灰化过程中砷/硒/铅的释放及矿物的变化规律[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60115-9
引用本文: 李扬, 鲁子龙, 杨赫, 靳立军, 胡浩权. 煤灰化过程中砷/硒/铅的释放及矿物的变化规律[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60115-9
LI Yang, LU Zi-long, YANG He, JIN Li-jun, HU Hao-quan. Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60115-9
Citation: LI Yang, LU Zi-long, YANG He, JIN Li-jun, HU Hao-quan. Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60115-9

煤灰化过程中砷/硒/铅的释放及矿物的变化规律

doi: 10.1016/S1872-5813(21)60115-9
基金项目: 国家重点研发计划(2018YFB0605104),国家自然科学基金(21776039)和中央高校基本科研业务费(DUT2018TB0)资助
详细信息
    作者简介:

    李扬:yli@dlut.edu.cn

    通讯作者:

    E-mail: hhu@dlut.edu.cn,Tel: 0411-84986157

  • 中图分类号: TQ534.9

Release characteristics of arsenic, selenium, lead and transformation of minerals during ashing process of coal

Funds: The project was supported by National Key R&D Program of China (2018YFB0605104), National Natural Science Foundation of China (21776039) and The Fundamental Research Funds for the Central Universities (DUT2018TB0)
  • 摘要: 本文选用两种煤(白音华褐煤和鄂州煤),研究了煤中重金属砷、硒、铅的赋存形态及其在灰化过程的释放规律,并结合煤中矿物质的变化,研究了灰化条件对矿物质转化的影响。通过外推法从热失重曲线确定了煤样的燃尽温度,以此为基准并结合国标法分别对煤样进行低温和高温灰化,对所制备的灰样采用XRD、XRF、TG-DTG等方法进行表征,分析煤中矿物质在不同灰化温度下的变化特征;采用逐级化学提取法分析煤样中As、Se、Pb的形态及含量,同时利用HNO3+ HF一步法提取煤样中的重金属,提取液中重金属含量均采用电感耦合等离子体质谱法(ICP-MS) 检测。研究结果表明,白音华煤中重金属主要以硫化物结合态形式存在的As为主,且As的挥发性随温度升高而增大;鄂州煤中重金属主要为硫化物结合态的Pb,其挥发性同样极易随温度变化而改变;煤中Se主要以有机结合态和硫化物结合态形式存在。煤在灰化过程中矿物质发生了一系列的变化:如高岭土逐渐脱羟基变成偏高岭土,最终转变成莫来石;黄铁矿氧化形成赤铁矿;石膏脱水形成硬石膏。灰化过程各重金属的释放率受燃烧温度的影响较大,其硫化物结合态含量越高,释放率随温度升高增加的程度越大。
  • 图  1  煤样逐级提取流程

    Figure  1  Sequential chemical extraction procedure of coal

    图  2  BYH中As(a)、Se(b)、Pb(c)含量

    Figure  2  Concentration of As(a)、Se(b)、Pb(c) in BYH

    图  3  EZ逐级提取As(a)、Se(b)、Pb(c)含量

    Figure  3  Concentration of As(a)、Se(b)、Pb(c) in EZ

    图  4  外推法示意图

    Figure  4  Diagram of extrapolation method

    图  5  HTA及LTA的XRD图谱

    Figure  5  XRD of HTA and LTA

    Δ: Quartz; □: Anhedritite; ◆: Hematite; ♣: Muscovite; ♥: Montmorillonite; ♠: Mullite; ●: Mayenite; ○: Anatase; *: Pyrite; $ \forall $: Calcite; ▽: Illite; ◊: Pyroxene

    图  6  灰样TG-DTG曲线

    Figure  6  TG-DTG curve of ash

    表  1  BYH和EZ工业分析和元素分析

    Table  1  Proximate and ultimate analyses of BYH and EZ

    SampleProximate analysis (%)Ultimate analysis (%, daf)
    MadAdVdafCHNSO
    BYH2.2324.1945.1772.225.350.910.9820.54
    EZ0.3429.7524.5283.013.711.780.7710.73
    下载: 导出CSV

    表  2  灰产率及其变化率

    Table  2  Ash yields and the rates of their change

    SampleALTA (%)AHTA (%)ΔA (%)
    BYH24.7823.475.58
    EZ30.4329.931.67
    下载: 导出CSV

    表  3  灰成分分析

    Table  3  Analyses of ash components

    Sample
    Concentration (%)Mole ratio (M)
    Al2O3SiO2Fe2O3SO3CaOMgONa2OK2OTiO2MCa/SMFe/S
    BYH LTA17.6262.666.125.383.230.731.661.270.930.811.13
    BYH HTA18.0263.956.343.153.270.731.671.31.021.261.79
    EZ LTA33.852.913.271.313.070.811.461.371.243.352.5
    EZ HTA34.852.773.271.333.090.680.991.421.23.322.46
    下载: 导出CSV

    表  4  灰样As、Se、Pb含量(μg·g−1)

    Table  4  Concentration of As、Se、Pb in ash (μg·g−1)

    SampleAsSePb
    BYH LTA263.570.1837.14
    BYH HTA260.83036.12
    EZ LTA7.471.60298.09
    EZ HTA7.230.75224.36
    下载: 导出CSV

    表  5  灰样As、Se、Pb释放率

    Table  5  Release rate of As、Se、Pb in ash

    Heavy metal
    EZ BR (%)BYH BR (%)
    LTAHTALTAHTA
    As8383.367.369.3
    Se8291.497.7100
    Pb4759.46668.7
    下载: 导出CSV
  • [1] 国家统计局[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070E&sj=2020.

    National Bureau of Statistics[DB/OL]. https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A070E&sj=2020.
    [2] CHENG C M, PAULINE H, PAUL C, CHANG Y N, LIN T Y. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems[J]. Energy and fuels,2009,23:4805−4816. doi: 10.1021/ef900293u
    [3] GUO J F, YAO D X, CHEN P , CHEN J, SHI F J. Distribution, enrichment and modes of occurrence of arsenic in Chinese coals[J]. Minerals,2017,7(7):1−23. (in Chinese
    [4] TESSIE R A, CAMPBELL P G C, BISSON M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry,1979,51(7):844−851. doi: 10.1021/ac50043a017
    [5] QUEVAUVILLE R Ph, RAURET G, GRIEPINK B. Single and sequential extraction in sediments and soils[J]. International Journal of Environmental Analytical Chemistry,1993,51(1/2/3/4):231−235.
    [6] LUO Yun, GIAMMAR D E, HUHMANN B L, et al. Speciation of selenium, arsenic, and zinc in class C fly ash[J]. Energy & Fuels,2011,25(7):2980−2987.
    [7] 朱振武, 禚玉群. 不同酸体系对微波消解法测量燃煤副产物中痕量元素的影响[J]. 清华大学学报,2016,56(10):1072−1078.

    ZHU Zhen-wu, ZHUO Yu-qun. Effect of acid systems for determination of trace elements in coal combustion byproducts using micro[J]. Journal of Tsinghua University,2016,56(10):1072−1078.
    [8] YU Z S, SUN X L, ZHANG Q. Using 37Cl16O/52Cr to correct 40Ar35Cl interference for the analysis of arsenic in geo-chemical exploration samples by inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analysis Chemistry,2008,36(11):1571−1574.
    [9] GOODARZI F, GENTZIS T, HOFMEISTER M. Elemental composition of fluvial-lacustrine and lacustrine coal-bearing environments, british columbia, canada[J]. Energy & Fuels,2020,34(12):16046−58.
    [10] SONG D Y, QIN Y, ZHANG J Y, et al. Concentration and distribution of trace elements in some coals from Northern China[J]. International Journal of Coal Geology,2007,69(3):179−91. doi: 10.1016/j.coal.2006.04.001
    [11] COLEMAN L, BRAGG L J, FINKELMAN R B. DISTRIBUTION AND MODE OF OCCURRENCE OF SELENIUM IN UNITED-STATES COALS[J]. Environmental Geochemistry and Health,1993,15(4):215−27. doi: 10.1007/BF00146745
    [12] 杨燕梅, 杨欣华, 刘青, 张海, 吕俊复. 灰化温度对准东煤灰组分分析的影响[J]. 煤炭学报,2016,41(10):2441−2447.

    YANG Yan-mei, YANG xin-hua, LIU Qing, ZHANG Hai, LV Jun-fu. Effect of ashing temperature on analysis of Zhundong coal ash[J]. Journal of China Coal Society,2016,41(10):2441−2447.
    [13] KANG Y, LIU G J, CHOU C L, WONG M H, ZHENG L G, DING R. Arsenic in Chinese coals: distribution, modes of occurrence, and environmental effects[J]. Science of the Total Environment,2011,412-413:1−13. (in Chinese doi: 10.1016/j.scitotenv.2011.10.026
    [14] 代世峰, 任德贻, 李生盛. 煤及顶板中稀土元素赋存状态及逐级化学提取[J]. 中国矿业大学学报,2002,31(5):349−353. doi: 10.3321/j.issn:1000-1964.2002.05.003

    DAI Shi-feng, REN De-yi, LI Sheng-sheng. Occurrence and sequential chemical extraction of rare earth element in coals and seam roofs[J]. Journal of China University of Mining & Technology,2002,31(5):349−353. doi: 10.3321/j.issn:1000-1964.2002.05.003
    [15] 刘晶, 郑楚光, 张军营, 王满辉. 煤中易挥发痕量元素赋存形态的分析方法及实验研究[J]. 燃烧科学与技术,2003,9(4):295−299. doi: 10.3321/j.issn:1006-8740.2003.04.002

    LIU Jing, ZHENG Chu-guang, ZHANG Jun-ying, WANG Man-hui. Study on the speciation of most volatile trace elements in coal[J]. Journal of Combustion Science and Technology,2003,9(4):295−299. doi: 10.3321/j.issn:1006-8740.2003.04.002
    [16] 王擎, 柳桐, 柏静儒, 焦国军, 魏艳珍. 逐级化学提取(SCEE)技术及其在煤微量元素 赋存状态研究中的应用[J]. 化工技术与开发,2010,39(4):25−29. doi: 10.3969/j.issn.1671-9905.2010.04.009

    WANG Qing, LIU Tong, BAI Jing-ru, JIAO Guo-jun, WEI Yan-zhen. Sequential chemical extraction technology and its applications in coal trace element occurrence study[J]. Technology & Development of Chemical Industry,2010,39(4):25−29. doi: 10.3969/j.issn.1671-9905.2010.04.009
    [17] WANG C B, LIU H M, ZHANG Y, ZOU C, EDWARD J A. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Progress in Energy and Combustion Science,2018,68:1−28. doi: 10.1016/j.pecs.2018.04.001
    [18] HU G Q, LIU G J, WU D, FU B. Geochemical behavior of hazardous volatile elements in coals with different geological origin during combustion[J]. Fuel,2018,233(2018):361−376.
    [19] 龚泓宇, 胡红云, 刘慧敏, 李帅, 黄永达, 付彪, 罗光前, 姚洪. 燃煤过程中砷的迁移转化及控制技术综述[J]. 中国机电工程学报,2020,40(22):7337−7349.

    GONG Hong-yu, HU Hong-yun, LIU Hui-min, LI Shuai, HUANG Yong-da, FU Biao, LUO Guang-qian, YAO Hong. Review of arsenic transformation and emission control during coal combustion[J]. Proceedings of the CSEE,2020,40(22):7337−7349.
    [20] 韩军, 王光辉, 徐明厚, 姚洪. 煤燃烧和热解过程中As和Se的挥发实验[J]. 华中科技大学学报,2009,37(5):113−119.

    HAN Jun, WANG Guang-hui, XU Minghou, YAO Hong. Experimental study of As and Se’s vaporization during coal combustion and pyrolysis[J]. Journal of Huazhong University of Science and Technology,2009,37(5):113−119.
    [21] FANG T, LIU G J, ZHOU C C, et al. Lead in Chinese coals: distribution, modes of occurrence, and environmental effects[J]. Environmental Geochemistry and Health,2014,36(3):563−81. (in Chinese doi: 10.1007/s10653-013-9581-4
    [22] WANG C A, LIU Y He, ZHANG X M, CHE D F. A Study on coal properties and combustion characteristics of blended coals in northwestern China[J]. Energy and fuels,2011,25(8):3634−3645. doi: 10.1021/ef200686d
    [23] 张晓羽, 张海霞, 那永洁. 准东煤成灰过程中钠的迁移特性及形态变化[J]. 洁净煤技术,2015,21(2):45−55.

    ZHANG Xiao-yu, ZHANG Hai-xia, NA Yong-jie. Migration characteristics and morphological changes of sodium during ashing process of Zhundong coal[J]. Clean Coal Technology,2015,21(2):45−55.
    [24] YANG Y H, HU H Y, XIE K, HUANG Y D, LIU H, LI X, YAO H, ICHIRO N. Insight of arsenic transformation behavior during high-arsenic coal combustion[J]. Proceedings of the Combustion Institute,2019,37(4):4443−4450. doi: 10.1016/j.proci.2018.07.064
    [25] 于敦喜, 徐明厚, 姚洪, 刘小伟, 周科. 煤燃烧中无机矿物向颗粒物的转化规律[J]. 工程热物理学报,2008,29(3):507−510. doi: 10.3321/j.issn:0253-231X.2008.03.037

    YU Dun-xi, XU Ming-hou, YAO Hong, LIU Xiao-wei, ZHOU Ke. Transformation of inorganic minerals into particulate matter during coal combustion[J]. Journal of Engineering Thermophysics,2008,29(3):507−510. doi: 10.3321/j.issn:0253-231X.2008.03.037
    [26] 詹靖, 徐明厚, 韩军, 乔瑜, 蔡铭. 燃煤过程中As, Se的挥发行为的研究[J]. 工程热物理学报,2004,25:201−204. doi: 10.3321/j.issn:0253-231X.2004.02.006

    ZHAN Jing, XU Ming-hou, HAN Jun, QIAO Yu, CAI Ming. Research on the volatilization behavior of arsenic and selenium during coal combustion[J]. Journal of Engineering Thermophysics,2004,25:201−204. doi: 10.3321/j.issn:0253-231X.2004.02.006
    [27] GUO Rui-xia, YANG Jian-li, LIU Zhen-yu. Behavior of trace elements during pyrolysis of coal in a simulated drop-tube reactor[J]. Fuel,2004,83:639−643. doi: 10.1016/j.fuel.2003.08.021
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  21
  • HTML全文浏览量:  12
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-10
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回