留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同气流床气化工艺炭黑的氧化反应特性

高明 陶迅 丁路 陈哲坤 代正华 于广锁 王辅臣

高明, 陶迅, 丁路, 陈哲坤, 代正华, 于广锁, 王辅臣. 不同气流床气化工艺炭黑的氧化反应特性[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60116-0
引用本文: 高明, 陶迅, 丁路, 陈哲坤, 代正华, 于广锁, 王辅臣. 不同气流床气化工艺炭黑的氧化反应特性[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60116-0
GAO Ming, TAO Xun, DING Lu, CHEN Zhe-kun, DAI Zheng-hua, YU Guang-suo, WANG Fu-chen. Oxidation characteristics of soot in different entrained flow gasification processes[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60116-0
Citation: GAO Ming, TAO Xun, DING Lu, CHEN Zhe-kun, DAI Zheng-hua, YU Guang-suo, WANG Fu-chen. Oxidation characteristics of soot in different entrained flow gasification processes[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60116-0

不同气流床气化工艺炭黑的氧化反应特性

doi: 10.1016/S1872-5813(21)60116-0
基金项目: 国家自然科学基金资助项目(21776086);国家自然科学基金资助项目(21776087)
详细信息
    作者简介:

    高明:gaom510@163.com

    通讯作者:

    E-mail:wfch@ecust.edu.cn

  • 中图分类号: TQ541

Oxidation characteristics of soot in different entrained flow gasification processes

Funds: The project was supported by National Natural Science Foundation of China (21776086) and National Natural Science Foundation of China (21776087)
  • 摘要: 利用高分辨透射显微镜分别对煤和生物质快速热解炭黑、天然气非催化部分氧化小试装置炭黑和工业装置炭黑、商业天然气炉法炭黑和煤焦油炉法炭黑等6种样品的形貌结构进行了表征;基于常压热重分析仪非等温法(50 ℃−800 ℃)对炭黑的着火点、氧化反应速率进行了研究,获得了炭黑的氧化反应动力学参数。研究表明不同的炭黑理化性质差异较大,煤和生物质快速热解炭黑的球形度更高,粒径较大;天然气非催化部分氧化小试装置炭黑在较低温度下形成,呈现被碳囊包裹的形态;天然气非催化部分氧化工业装置炭黑呈现中空结构,粒径较小。非催化部分氧化小试装置和工业装置炭黑的氧化反应性接近,是天然气炉法炭黑的3.1倍,是煤焦油炉法炭黑的是3.2倍;非催化部分氧化炭黑的反应性是煤快速热解炭黑的9.0倍,是生物质快速热解炭黑的26.6倍。2种非催化部分氧化炭黑和2种商业炉法炭黑的活化能随温度变化呈现分段形式;2种快速热解炭黑的活化能随温度升高基本不变。
  • 图  1  炭黑样品的形貌对比图

    Figure  1  Comparison of morphology of soot samples

    (a): NG-furnace-CB; (b): Tar-furnace-CB; (c): Coal-RP-soot; (d): Biomass-RP-soot; (e): Lab-NCPOX-soot; (f): Ind-NCPOX-soot

    图  2  炭黑样品O2气氛下非等温气化过程的TGA曲线

    Figure  2  TGA curve of non-isothermal gasification process of soot under O2 atmosphere

    图  3  GC-MS测定的炭黑表面吸附物的主要成分

    Figure  3  Soot surface adsorbent composition measured by GC-MS

    图  4  炭黑样品O2气氛下非等温气化过程的DTG曲线

    Figure  4  DTG curve of non-isothermal gasification process of soot under O2 atmosphere

    图  5  炭黑样品的动力学特性曲线

    Figure  5  Kinetic characteristic curve of soot sample

    图  6  炭黑的氧化模型示意图

    Figure  6  Oxidation model of soot

    (a): IOM; (b): HRM

    表  1  煤和生物质的性质[14, 15]

    Table  1  Properties of coal and biomass

    SampleProximate analyses wd (%)Ultimate analyses wd (%)
    VFCACHNSO
    Coal35.4859.065.4676.854.631.231.3410.49
    Saw dust90.927.741.3442.395.640.790.4449.40
    下载: 导出CSV

    表  2  天然气非催化部分氧化实验的反应工况

    Table  2  Reaction conditions of the NC-POX experiment of natural gas

    O2/CH4CH4 flow rate (NL∙min−1)O2 flow rate (NL∙min−1)CH4 velocity (m∙s−1)O2 velocity (m∙s−1)Residence time (s)
    0.8018.8915.11123.34142.510.929
    下载: 导出CSV

    表  3  炭黑的氧化反应特性参数

    Table  3  Oxidation reaction characteristic parameters of soot

    SampleTi0
    (℃)
    Temperature of wmax
    (℃)
    Tf
    (℃)
    Reaction time
    (min)
    wmax
    (%·min−1)
    wmean
    (%·min−1)
    S
    (× 10−9·%2·min−2·℃−3)
    NG- furnace-CB496.7559.9584.38.763.511.0926.6
    Tar-furnace-CB488.6548.3588.49.983.870.9325.5
    Coal-RP-soot518.6580.7614.59.591.700.889.1
    Biomass-RP-soot460.8531.2572.011.120.790.473.1
    Lab-NCPOX-soot453.7493.7503.34.965.181.6381.5
    Ind-NCPOX-soot531.6550.9594.66.309.631.1263.9
    下载: 导出CSV

    表  4  炭黑样品的氧化动力学参数

    Table  4  Oxidation kinetic parameters of soot samples

    SampleTemperature range (℃)baE (kJ·mol−1)A (min−1)R2
    NG-furnace-CBstage 1496.7−542.811.42−219241822.15 × 10100.9926
    stage 2542.8−577.371.65−709435909.53 × 10360.9970
    stage 3577.3−584.34.98−143271192.36 × 1070.9759
    Tar-furnace-CBstage 1488.6−533.85.49−165751384.41 × 1070.9851
    stage 2533.8−558.776.08−734336118.23 × 10380.9978
    stage 3558.7−588.410.00−186301554.49 × 1090.9932
    Coal-RP-soot518.6−614.518.41−269722242.83 × 10130.9789
    Biomass-RP-soot460.8−572.01.17−11222934.14 × 1050.9654
    Lab-NCPOX-sootstage 1453.7−483.9−2.47−9144769.21 × 1030.9941
    stage 2483.9−503.391.53−802726674.62 × 10450.9509
    Ind-NCPOX-sootstage 1531.6−547.65.37−164591373.91 × 1070.9981
    stage 2547.6−556.3201.19−17736214754.25 × 10930.9874
    stage 3556.3−594.616.06−240712002.44 × 10120.9777
    下载: 导出CSV
  • [1] UMEMOTO S, KAJITANI S, MIURA K, WATANABE H, KAWASE M. Extension of the chemical percolation devolatilization model for predicting formation of tar compounds as soot precursor in coal gasification[J]. Fuel Process Technol,2017,159:256−265. doi: 10.1016/j.fuproc.2017.01.037
    [2] MIURA K, NAKAGAWA H, NAKAI S-I, KAJITANI S. Analysis of gasification reaction of coke formed using a miniature tubing-bomb reactor and a pressurized drop tube furnace at high pressure and high temperature[J]. Chem Eng Sci,2004,59(22-23):5261−5268. doi: 10.1016/j.ces.2004.08.025
    [3] GöKTEPE B, UMEKI K, GEBART R. Does distance among biomass particles affect soot formation in an entrained flow gasification process?[J]. Fuel Process Technol,2016,141:99−105. doi: 10.1016/j.fuproc.2015.06.038
    [4] 王辅臣, 李伟锋, 代正华, 陈雪莉, 刘海峰, 于遵宏. 天然气非催化部分氧化制合成气过程的研究[J]. 石油化工,2006,1:47−51.

    WANG Fu-chen, LI Wei-feng, DAI Zheng-hua, CHEN Xue-li, LIU Hai-feng, YU Zun-hong. Preparation of syngas from natural gas by non-catalytic partial oxidation[J]. Petrochem Technol,2006,1:47−51.
    [5] 王辅臣, 代正华, 刘海峰, 龚欣, 于广锁, 于遵宏. 焦炉气非催化部分氧化与催化部分氧化制合成气工艺比较[J]. 煤化工,2006,34(2):4−9. doi: 10.3969/j.issn.1005-9598.2006.02.002

    WANG Fu-chen, DAI Zheng-hua, LIU Hai-feng, GONG Xin, YU Guang-suo, YU Zun-hong. COG based syngas production process with catalytic and non- catalytic partial oxidation[J]. Coal Chem Ind,2006,34(2):4−9. doi: 10.3969/j.issn.1005-9598.2006.02.002
    [6] VERMA P, PICKERING E, SAVIC N, ZARE A, BROWN R, RISTOVSKI Z. Comparison of manual and automatic approaches for characterisation of morphology and nanostructure of soot particles[J]. J Aerosol Sci,2019,136:91−105. doi: 10.1016/j.jaerosci.2019.07.001
    [7] UMEMOTO S, KAJITANI S, HARA S, KAWASE M. Proposal of a new soot quantification method and investigation of soot formation behavior in coal gasification[J]. Fuel,2016,167:280−287. doi: 10.1016/j.fuel.2015.11.074
    [8] CHANG Q, GAO R, GAO M, YU G, WANG F. The structural evolution and fragmentation of coal-derived soot and carbon black during high-temperature air oxidation[J]. Combust Flame,2020,216:111−125. doi: 10.1016/j.combustflame.2019.11.045
    [9] SEPTIEN S, VALIN S, PEYROT M, DUPONT C, SALVADOR S. Characterization of char and soot from millimetric wood particles pyrolysis in a drop tube reactor between 800 °C and 1400 °C[J]. Fuel,2014,121:216−224. doi: 10.1016/j.fuel.2013.12.026
    [10] TRUBETSKAYA A, JENSEN P A, JENSEN A D, GARCIA LLAMAS A D, UMEKI K, GARDINI D, KLING J, BATES R B, GLARBORG P. Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures[J]. Appl Energy,2016,171:468−482. doi: 10.1016/j.apenergy.2016.02.127
    [11] TRUBETSKAYA A, LARSEN F H, SHCHUKAREV A, STåHL K, UMEKI K. Potassium and soot interaction in fast biomass pyrolysis at high temperatures[J]. Fuel,2018,225:89−94. doi: 10.1016/j.fuel.2018.03.140
    [12] TRUBETSKAYA A, BROWN A, TOMPSETT G A, TIMKO M T, KLING J, BROSTRöM M, ANDERSEN M L, UMEKI K. Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols[J]. Appl Energy,2018,212:1489−1500. doi: 10.1016/j.apenergy.2017.12.068
    [13] 袁帅. 煤、生物质及其混合物的快速热解及过程中氮的迁移[D]: 华东理工大学, 2012.

    YUAN Shuai. Rapid pyrolysis of coal, biomass, and coal/biomass blends, and nitrogen evolution during rapid pyrolysis[D]. Shanghai: East China University of Science and Technology, 2012.
    [14] CHANG Q, GAO R, LI H, YU G, LIU X, WANG F. Understanding of formation mechanisms of fine particles formed during rapid pyrolysis of biomass[J]. Fuel,2018,216:538−547. doi: 10.1016/j.fuel.2017.12.036
    [15] CHANG Q, GAO R, LI H, YU G, WANG F. Effect of CO2 on the characteristics of soot derived from coal rapid pyrolysis[J]. Combust Flame,2018,197:328−339. doi: 10.1016/j.combustflame.2018.05.033
    [16] 李炳炎主编. 炭黑生产与应用手册[M]. 北京: 化学工业出版社, 2000.

    Li Bing-yan. Carbon black production and application manual[M]. Beijing: Chemical Industry Press, 2000.
    [17] WANG X, JIN Q, WANG L, BAI S, MIKULČIĆ H, VUJANOVIĆ M, TAN H. Synergistic effect of biomass and polyurethane waste co-pyrolysis on soot formation at high temperatures[J]. J Environ Manage,2019,239:306−315. doi: 10.1016/j.jenvman.2019.03.073
    [18] 吕建燚, 石晓斌. 生物质燃烧碳烟的物化特性及生成机理研究[J]. 燃料化学学报,2013,41(10):1184−1190.

    LYU Jian-yi, SHI Xiao-bin. Physicochemical properties and formation mechanism of soot during biomass burning[J]. J Fuel Chem Technol,2013,41(10):1184−1190.
    [19] AL-OMARI S B, KAWAJIRI K, YONESAWA T. Soot processes in a methane-fueled furnace and their impact on radiation heat transfer to furnace walls[J]. Int J Heat Mass Transf,2001,44:2567−2581. doi: 10.1016/S0017-9310(00)00288-X
    [20] BELTRAME A, PORSHNEV P, MERCHAN-MERCHAN W, SAVELIEV A, FRIDMAN A, KENNEDY L A, PETROVA O, ZHDANOK S, AMOURI F, CHARON O. Soot and NO formation in methane–oxygen enriched diffusion flames[J]. Combust Flame,2001,124(1):295−310.
    [21] SHI Y, MURR L E, SOTO K F, LEE W Y, GUERRERO P A, RAMIREZ D A. Characterization and comparison of speciated atmospheric carbonaceous particulates and their polycyclic aromatic hydrocarbon contents in the context of the paso del norte airshed along the U. S. -mexico border[J]. Polycycl Aromat Compd,2007,27(5):361−400. doi: 10.1080/10406630701624333
    [22] 谢广录, 范卫东, 徐宾, 章明川. 天然气炭黑燃烧特性的热天平研究[J]. 热能动力工程,2005,5:521−526, 554-555. doi: 10.3969/j.issn.1001-2060.2005.05.018

    XIE Guang-lu, FAN Wei-dong, XU Bin, ZHANG Ming-chuan. Thermogravimetric study of the combustion characteristics of natural-gas soot[J]. J Eng Therm Energy Power,2005,5:521−526, 554-555. doi: 10.3969/j.issn.1001-2060.2005.05.018
    [23] 范卫东, 谢广录, 徐宾, 于娟, 章明川. 氧体积分数对炭黑燃烧特性影响的热天平研究[J]. 燃料化学学报,2005,33(5):550−555.

    FAN Wei-dong, XIE Guang-lu, XU Bin, YU Juan, ZHANG Ming-chuan. Thermogravimetric study of the effect of oxygen concentrations on combustion characteristics of natural gas soot[J]. J Fuel Chem Technol,2005,33(5):550−555.
    [24] 杨冬. 柴油机颗粒氧化动力学特性研究[D]: 西华大学, 2015.

    YANG Dong. Investigation on the oxidation kinetics of diesel particulate[D]. Chengdu: Xihua University, 2015.
    [25] 唐子君, 岑超平, 方平. 城市污水污泥与煤混烧的热重试验研究[J]. 动力工程学报,2012,32(11):878−884, 897. doi: 10.3969/j.issn.1674-7607.2012.11.010

    TANG Zi-jun, CEN Chao-ping, FANG Ping. Thermogravimetric experiment on co-firing characteristics of coal with municipal sewage sludge[J]. J Chin Soc Power Eng,2012,32(11):878−884, 897. doi: 10.3969/j.issn.1674-7607.2012.11.010
    [26] HE Q, HUANG Y, DING L, GUO Q, GONG Y, YU G. Effect of partial rapid pyrolysis on bituminous properties: From structure to reactivity[J]. Energy & Fuels,2020,34(5):5476−5484.
    [27] 周志杰, 范晓雷, 张薇, 王辅臣, 于遵宏. 非等温热重分析研究煤焦气化动力学[J]. 煤炭学报,2006,2:219−222. doi: 10.3321/j.issn:0253-9993.2006.02.019

    ZHOU Zhi-jie, FAN Xiao-lei, ZHANG Wei, WANG Fu-chen, YU Zun-hong. Char gasification kinetics using non-isothermal TGA[J]. J China Coal Soc,2006,2:219−222. doi: 10.3321/j.issn:0253-9993.2006.02.019
    [28] 梁斌, 冯强, 白浩隆, 武琼, 宋华, 杨晓辉, 蓝天. 煤泥干粉在流化床中燃烧特性的实验研究[J]. 煤炭学报,2018,43(z2):560−567.

    LIANG Bin, FENG Qiang, BAI Hao-long, WU Qiong, SONG Hua, YANG Xiao-hui, LAN tian. Combustion characteristics of dry coal slime powders in a fluidized bed[J]. J China Coal Soc,2018,43(z2):560−567.
    [29] DING L, ZHOU Z, GUO Q, WANG Y, YU G. In situ analysis and mechanism study of char-ash/slag transition in pulverized coal gasification[J]. Energy Fuels,2015,29(6):3532−3544. doi: 10.1021/acs.energyfuels.5b00322
    [30] CHANG Q, GAO R, GAO M, YU G, MATHEWS J P, WANG F. Experimental analysis of the evolution of soot structure during CO2 gasification[J]. Fuel,2020,265:111−125.
    [31] YE D P, AGNEW J B, ZHANG D K. Gasification of a south australian low-rank coal with carbon dioxide and steam: Kinetics and reactivity studies[J]. Fuel,1998,77(11):1209−1219. doi: 10.1016/S0016-2361(98)00014-3
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  24
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 修回日期:  2021-05-12
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回