留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能

毛凯敏 莫文龙 马凤云 马亚亚 王越 魏贤勇 樊星

毛凯敏, 莫文龙, 马凤云, 马亚亚, 王越, 魏贤勇, 樊星. 淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能[J]. 燃料化学学报(中英文), 2021, 49(10): 1389-1401. doi: 10.1016/S1872-5813(21)60117-2
引用本文: 毛凯敏, 莫文龙, 马凤云, 马亚亚, 王越, 魏贤勇, 樊星. 淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能[J]. 燃料化学学报(中英文), 2021, 49(10): 1389-1401. doi: 10.1016/S1872-5813(21)60117-2
MAO Kai-min, MO Wen-long, MA Feng-yun, MA Ya-ya, WANG Yue, WEI Xian-yong, FAN Xing. Composition and structure characteristics of soluble organic matter from Naomaohu lignite by sequential extraction and thermal conversion performance of the corresponding residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1389-1401. doi: 10.1016/S1872-5813(21)60117-2
Citation: MAO Kai-min, MO Wen-long, MA Feng-yun, MA Ya-ya, WANG Yue, WEI Xian-yong, FAN Xing. Composition and structure characteristics of soluble organic matter from Naomaohu lignite by sequential extraction and thermal conversion performance of the corresponding residue[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1389-1401. doi: 10.1016/S1872-5813(21)60117-2

淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能

doi: 10.1016/S1872-5813(21)60117-2
基金项目: 新疆维吾尔自治区引进高层次人才天池计划,煤炭加工与高效洁净利用教育部重点实验室开放基金和新疆维吾尔自治区重点实验室开放课题(2018D04008)资助
详细信息
    作者简介:

    毛凯敏(1995-)男,新疆哈密人,在读硕士研究生。Tel:15729915460,E-mail:1969070008@qq.com

    通讯作者:

    E-mail: mowenlong@xju.edu.cn

    ma_fy@126.com

  • 中图分类号: TQ531

Composition and structure characteristics of soluble organic matter from Naomaohu lignite by sequential extraction and thermal conversion performance of the corresponding residue

Funds: The project was supported by Tianchi Project for Introducing High-Level Talents to Xinjiang Uyghur Autonomous Region (China), Key Laboratory of Coal Processing and Efficient Utilization from Ministry of Education and Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region (2018D04008)
  • 摘要: 采用二硫化碳、甲醇、丙酮和二硫化碳/丙酮(等体积混合溶剂)对淖毛湖褐煤(NL)进行逐级超声萃取,得到各级萃取物(E1−E4)和最终萃余物(ER)。采用GC-MS对各级萃取物E1−E4中的化合物组成和结构进行分析,发现E1中主要为烷烃、芳烃、醇类化合物和酯类化合物;E2中以烷烃、醇类化合物和酯类化合物为主。醇类化合物、酚类化合物以及酯类化合物是E3中的主要物质,且酯类化合物主要为邻苯二甲酸二酯类化合物。受到CS2和丙酮这两种溶剂协同作用的影响,E4中的烯烃类化合物的相对含量也比较高。采用FT-IR对NL、E1−E4和ER中所含官能团进行表征分析,结果发现,超声萃取过程只是将淖毛湖褐煤大分子骨架中游离的小分子化合物以及与大分子骨架以弱共价键相连的小分子萃取了出来,并未破坏煤样的大分子骨架结构。此外,NL和ER红外数据的分峰拟合结果显示,经过超声萃取后,ER中红外吸收峰的种类并未增加,只是峰的强度发生了改变。通过NL和ER的TG-DTG曲线可知,超声萃取后,NL的失重量由47.09%增加至51.04%,最大失重速率峰由450 ℃提前至430 ℃。NL和ER基于Coats-Redfern模型的热解动力学分析结果表明,经过超声萃取后,ER在快速热解阶段的活化能比NL更低,热解过程更容易进行。
  • FIG. 959.  FIG. 959.

    FIG. 959.  FIG. 959.

    图  1  淖毛湖煤逐级萃取流程图

    Figure  1  Sequential extraction for NL

    图  2  逐级萃取收率和总萃取收率

    Figure  2  Yields of sequential extract and total extract

    图  3  E1−E4的总离子流色谱图

    Figure  3  Total ion current chromatogram of E1−E4

    图  4  E1−E4中各组分的相对含量

    Figure  4  Relative content distribution of each composition in E1−E4

    图  5  E1−E4中芳烃类化合物及其衍生物的DBE分布

    Figure  5  DBE distribution of aromatic compounds and their derivatives in E1−E4

    图  6  E1−E4中醇类化合物的DBE分布

    Figure  6  DBE distribution of alcohol compounds in E1−E4

    图  7  E1−E4中酯类化合物的DBE分布

    Figure  7  DBE distribution of esters in E1−E4

    图  8  E1−E4、NL及ER傅里叶变换红外光谱谱图

    Figure  8  FT-IR of E1−E4, NL and ER

    图  9  (a) NL和ER在3600−3000 cm−1红外分峰谱图;(b) NL和ER在3000−2800 cm−1红外分峰谱图;(c) NL和ER在1800−1000 cm−1红外分峰谱图;(d) NL和ER在900−700 cm−1红外分峰谱图

    Figure  9  (a) FT-IR curve-fitting results of NL and ER (3600−3000 cm1); (b) FT-IR curve-fitting results of NL and ER (3000−2800 cm−1); (c) FT-IR curve-fitting results of NL and ER (1800−1000 cm−1); (d) FT-IR curve-fitting results of NL and ER (900−700 cm−1)

    图  10  NL和ER在10 ℃/min升温速率下的TG和DTG曲线

    Figure  10  TG and DTG curves of NL and ER at a heating rate of 10 oC/min

    图  11  NL和ER在10 ℃/min升温速率下的TG和DTG曲线

    Figure  11  TG and DTG curves of NL and ER at a heating rate of 10 ℃/min

    图  12  NL和ER的转化率

    Figure  12  Conversion rates curves of NL and ER

    图  13  NL和ER快速热解阶段动力学拟合图

    Figure  13  Kinetic fitting results of NL and ER in the fast pyrolysis stage

    表  1  淖毛湖褐煤的工业分析和元素分析

    Table  1  Proximate and ultimate analyses of NL

    Proximate analysis w /%Ultimate analysis wdaf /%
    MadAdVdafCHNSOaH/CO/C
    7.1210.4949.2071.895.170.880.7421.320.860.22
    a: by difference
    下载: 导出CSV

    表  2  NL和ER中官能团的相对含量及其变化

    Table  2  Contents and changes of functional groups in NL and ER

    Band position σ/cm−1Functional groupArea percentage/%Δ = (ER−NL)/NL*100%
    NLER
    3512OH−π11.1622.48101.53
    3416self-associated −OH37.2930.57−18.02
    3312OH−ether21.1321.170.15
    3207cyclic−OH21.3116.48−22.65
    3099OH−N9.119.302.05
    2956aliphatic −CH311.2518.9268.19
    2922asymmetric aliphatic −CH244.9331.67−29.52
    2892aliphatic −CH14.0420.7247.53
    2853symmetric aliphatic −CH229.7728.69−3.63
    1713conjugated C=O16.0922.4139.24
    1615aromatic C=C66.1359.25−10.40
    1443asymmetric −CH3, −CH27.758.499.49
    1385CH3−Ar, R2.502.12−14.97
    1285symmetric deformatrion −CH31.602.0528.06
    1231symmetric deformatrion −CH31.620.88−46.04
    1172C−O phenols1.521.8320.42
    1102grease C−O1.661.734.47
    1036alkyl ethers1.580.86−45.19
    1013alkyl ethers0.550.38−30.77
    868one adjacent H deformations7.035.71−18.88
    834two adjacent H deformations15.5415.30−1.47
    815two adjacent H deformations15.9116.805.65
    797three adjacent H deformations18.7014.90−20.35
    780three adjacent H deformations14.5817.5520.34
    765three adjacent H deformations13.4313.591.21
    748four adjacent H deformations14.8116.159.00
    下载: 导出CSV

    表  3  NL和ER的TG/DTG曲线中的特征温度

    Table  3  Characteristic temperatures in TG/DTG curves of NL and ER

    Sampletc /℃ti /℃tm /℃tmax /℃tn /℃tp /℃tf /℃
    NL70190374450550740855
    ER57190360430550665850
    下载: 导出CSV

    表  4  NL和ER不同反应级数下的热解动力学参数

    Table  4  Calculation results of pyrolysis kinetic parameters under different reaction orders of NL and ER

    Pyrolysis stageSampleReaction
    order
    Regression
    equation
    Correlation
    coefficient R2
    Activation energy
    E/(kJ·mol−1)
    Pre-exponential
    factor A/min−1
    2RT/E
    Fast pyrolysis stageER1y = −3003.94x − 9.390.975024.9741.2590.250
    2y = −4875.12x − 6.390.989340.53240.8390.154
    3y = −7154.77x − 2.780.990759.4852222.7550.105
    NL1y = −2325.23x − 10.190.963719.3320.8750.318
    2y = −4009.08x − 7.400.988833.33224.4630.185
    3y = −6071.70x − 4.030.994250.4801080.6500.122
    下载: 导出CSV
  • [1] HE W J, LIU Z Y, LIU Q Y, SHI L, SHI X, WU J F, GUO X J. Behavior of radicals during solvent extraction of three low rank bituminous coals[J]. Fuel Process Technol,2017,156:221−227. doi: 10.1016/j.fuproc.2016.10.029
    [2] KONG J, WEI X Y, ZHAO M X, LI Z K, YAN H L, ZHENG Q X, ZONG Z M. Effect of sequential extraction and thermal dissolution on the structure and composition of Buliangou subbituminous coal[J]. Fuel Process Technol,2016,148:324−331. doi: 10.1016/j.fuproc.2016.03.014
    [3] 殷甲楠, 张凤桐, 樊丽华, 梁英华, 王蕾. 低阶煤有机溶剂萃取的研究进展[J]. 洁净煤技术,2014,20(6):100−103+51.

    YIN Jia-nan, ZHANG Feng-tong, FAN Li-hua, LIANG Ying-hua, WANG Lei. Research progress of organic solvent extraction of low rank coal[J]. Clean Coal Technol,2014,20(6):100−103+51.
    [4] MA Y Y, MA F Y, MO W L. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue[J]. Fuel,2019,266:117039.
    [5] 王晓华, 魏贤勇, 宗志敏. 溶剂分级萃取法研究平朔煤的化学组成特征[J]. 煤炭转化,2006,29(2):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002

    WANG Xiao-hua, WEI Xian-yong, ZONG Zhi-min. Study on chemical constituent characteristic of fractionated extraction from Pingshuo coal[J]. Coal Convers,2006,29(2):4−7. doi: 10.3969/j.issn.1004-4248.2006.02.002
    [6] 戈军, 郭龙德, 郭智慧, 石斌, 张建芳. 溶剂与溶胀促进剂对神华煤溶胀行为的影响[J]. 化工进展,2010,29(10):1885−1889.

    GE Jun, GUO Long-de, GUO Zhi-hui, SHI Bing, ZHANG Jian-fang. Shenhua coal swelling with solvents and swelling promoters[J]. Chem Ind Eng Prog,2010,29(10):1885−1889.
    [7] IINO M, TAKANOHASHI T, OHSUGA H, TODA K. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature: Effect of coal rank and synergism of the mixed solvent[J]. Fuel,1988,67(12):1639−1647. doi: 10.1016/0016-2361(88)90208-6
    [8] 吴法鹏, 鲁浩, 闫洁, 王瑞玉, 赵云鹏, 魏贤勇. 两种不同还原性次烟煤可溶有机质分子组成差异[J]. 燃料化学学报,2018,46(7):769−777. doi: 10.3969/j.issn.0253-2409.2018.07.001

    WU Fa-peng, LU Hao, YAN Jie, WANG Rui-yu, ZHAO Yun-peng, WEI Xian-yong. Differences in molecular composition of soluble organic species in two Chinese subbituminous coals with different reducibility[J]. J Fuel Chem Technol,2018,46(7):769−777. doi: 10.3969/j.issn.0253-2409.2018.07.001
    [9] LIU F J, WEI X Y, GUI J, WANG Y G, LI P. Characterization of biomarkers and structural features of condensed aromatics in Xianfeng lignite[J]. Energy Fuels,2013,27(12):7369−7378. doi: 10.1021/ef402027g
    [10] LIU F J, WEI X Y, GUI J, LI P, WANG Y G, LI W T, ZONG Z M, FAN X, ZHAO Y P. Characterization of organonitrogen species in Xianfeng lignite by sequential extraction and ruthenium ion-catalyzed oxidation[J]. Fuel Process Technol,2014,126:199−206. doi: 10.1016/j.fuproc.2014.05.004
    [11] HAS B, GI A, JW A. Pyrolysis characteristics and kinetics of low rank coals by distributed activation energy model[J]. Energy Convers Manage,2016,126:1037−1046.
    [12] LIU J X, MA J F, LEI L, ZHANG H, JIANG X M. Pyrolysis of superfine pulverized coal. Part 5. Thermogravimetric analysis[J]. Energy Conver Manage,2017,154:491−502. doi: 10.1016/j.enconman.2017.11.041
    [13] LIU F J, WEI X Y, FAN M H, ZONG Z M. Separation and structural characterization of the value-added chemicals from mild degradation of lignites: A review[J]. Appl Energy,2016,170:415−436. doi: 10.1016/j.apenergy.2016.02.131
    [14] HU R N, WANG Z C, LI L, WANG X L, PAN C X, KANG S G. Effect of solvent extraction pretreatments on the variation of macromolecular structure of low rank coals[J]. J Fuel Chem Technol,2018,46(7):778−786. doi: 10.1016/S1872-5813(18)30034-3
    [15] LV J H, WEI X Y, WANG Y H, WANG T M, LIU J, ZHANG D D. Mass spectrometric analyses of biomarkers and oxygen-containing species in petroleum ether-extractable portions from two Chinese coals[J]. Fuel,2016,173:260−267. doi: 10.1016/j.fuel.2016.01.067
    [16] SHI D L, WEI X Y, FAN X, ZONG Z M, CHEN B, ZHAO Y P, WANG Y G, CAO J P. Characterizations of the extracts from geting bituminous coal by spectrometries[J]. Energy Fuels,2013,27:3709−3717. doi: 10.1021/ef4004686
    [17] LI Z K, WEI X Y, YAN H L. Advances in lignite extraction and conversion under mild conditions[J]. Energy Fuels,2015,29:6869−6886.
    [18] LI F, ZHAO G Y, ZHAO Y G, ZHAO M S, TANG J W. Construction of the molecular structure model of the Shengli lignite using TG-GC/MS and FTIR spectrometry data[J]. Fuel,2017,203:924−931. doi: 10.1016/j.fuel.2017.04.112
    [19] LIAO J J, FEI Y, MARSHALL M, L. CHAFFEE A, CHANG L P. Hydrothermal dewatering of a Chinese lignite and properties of the solid products[J]. Fuel,2016,180:473−480. doi: 10.1016/j.fuel.2016.04.027
    [20] TIAN B, QIAO Y Y, TIAN Y Y, XIE K C, LIU Q, ZHOU H F. FTIR study on structural changes of different-rank coals caused by single/multiple extraction with cyclohexanone and NMP/CS2 mixed solvent[J]. Fuel Process Technol,2016,154:210−218. doi: 10.1016/j.fuproc.2016.08.035
    [21] WANG S, TANG Y, SCHOBERT H H, GUO Y, SU Y. FTIR and 13C NMR investigation of coal component of late permian coals from southern China[J]. Energy Fuels,2011,25(12):5672−5677. doi: 10.1021/ef201196v
    [22] ZHANG W Q, JIANG S G, WANG K, WU Z Y, SHAO H. An experimental study of the effect of ionic liquids on the low temperature oxidation of coal[J]. Int J Min Sci Technol,2012,22(5):687−691. doi: 10.1016/j.ijmst.2012.08.016
    [23] SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol,2017,156:454−460. doi: 10.1016/j.fuproc.2016.10.008
    [24] WU D, LIU G J, SUN R Y. Investigation on structural and thermodynamic characteristics of perhydrous bituminous coal by fourier transform infrared spectroscopy and thermogravimetry/Mass spectrometry[J]. Energy Fuels,2014,28:3024−3035. doi: 10.1021/ef5003183
    [25] LIN X C, WANG C H, IDETA K, MIYAWAKI J, NISHIYAMA Y, WANG Y G, YOON S, MOCHIDA I. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel,2014,118:257−264. doi: 10.1016/j.fuel.2013.10.081
    [26] KOTYCZKA-MORAŃSKA M, TOMASZEWICZ M. Comparison of the first stage of the thermal decomposition of polish coals by diffuse reflectance infrared spectroscopy[J]. J Energy Inst,2018,91(2):240−250. doi: 10.1016/j.joei.2016.11.011
    [27] HE X Q, LIU X F, NIE B S, SONG D Z. FTIR and Raman spectroscopy characterization of functional groups in various rank coals[J]. Fuel,2017,206:555−563. doi: 10.1016/j.fuel.2017.05.101
    [28] ARENILLAS A, RUBIERA F, PEVIDA C, PIS J J. A comparison of different methods for predicting coal devolatilisation kinetics[J]. J Anal Appl Pyrolysis,2001,58:685−701.
    [29] SAIKIA B K, BORUAH R K, GOGOI P K. FT-IR and XRD analysis of coal from makum coalfield of assam[J]. J Earth Syst Sci,2007,116(6):575−579. doi: 10.1007/s12040-007-0052-0
    [30] 于文浩, 雷智平, 潘春秀, 任世彪. 预处理对褐煤热解行为的影响研究进展[J]. 燃料与化工,2018,49(2):1−3+11.

    YU Wen-hao, LEI Zhi-ping, PAN Chun-xiu, REN Shi-biao. Study on the influence of pre-treatment to lignite pyrolysis[J]. Fuel Chem Process,2018,49(2):1−3+11.
    [31] 刘耀鑫, 伯灵, 冯兆兴, 李晓鹤. 溶胀预处理煤热解特性研究[J]. 煤炭技术,2018,37(4):304−306.

    LIU Yao-xin, BO Ling, FENG Zhao-xing, LI Xiao-he. Study on behavior of solvent swelling coal pyrolysis[J]. Coal Technol,2018,37(4):304−306.
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  38
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-11
  • 修回日期:  2021-04-25
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回