留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二氧化碳加氢制一些烃类化合物的研究进展

王晗 樊升 王森 董梅 秦张峰 樊卫斌 王建国

王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60122-6
引用本文: 王晗, 樊升, 王森, 董梅, 秦张峰, 樊卫斌, 王建国. 二氧化碳加氢制一些烃类化合物的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60122-6
WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60122-6
Citation: WANG Han, FAN Sheng, WANG Sen, DONG Mei, QIN Zhang-feng, FAN Wei-bin, WANG Jian-guo. Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60122-6

二氧化碳加氢制一些烃类化合物的研究进展

doi: 10.1016/S1872-5813(21)60122-6
基金项目: 国家重点研发计划(2018YFB0604802),国家自然科学基金(21991092, U1910203, 21802157, 21972159)资助
详细信息
    通讯作者:

    E-mail: wangsen@sxicc.ac.cn (王森)

    qzhf@sxicc.ac.cn (秦张峰)

  • 中图分类号: O643.36; X773

Research progresses in the hydrogenation of carbon dioxide to certain hydrocarbon products

Funds: The project was supported by National Key Research and Development Program of China (2018YFB0604802) and National Natural Science Foundation of China (21991092, U1910203, 21802157, 21972159)
More Information
  • 摘要: 化石资源的大量使用导致CO2的大量排放,带来了严重的环境问题。与此同时,CO2又是一种清洁、无毒的含碳资源。将CO2作为原料,直接转化制备重要化学品,不仅可以减缓温室效应,同时也是一条有效利用含碳资源制备清洁燃料和化学品的新路线。本文概述了近年来关于CO2加氢制备一些烃类化合物(主要包括甲烷、烯烃和芳烃)的相关研究进展;重点分析了CO2加氢制烃类化合物相关过程催化剂的研发状态和对催化反应机理认识,并对CO2加氢转化利用的未来发展进行了展望。
  • 图  1  CO2转化利用示意图

    Figure  1  Diagram of CO2 conversion and utilization

    图  2  CO2加氢制甲烷反应机理示意图

    Figure  2  Reaction mechanism for the hydrogenation of CO2 to methane

    图  3  Rh/TiO2催化剂上CO2甲烷化反应,各温度下甲烷生成速率随Rh粒径的变化(a)以及生成甲烷的TOF值随Rh粒径的变化(b)[18]

    Figure  3  CO2 methanation over the Rh/TiO2 catalyst: (a) relationship between the methane formation rate and Rh particle size at different temperatures; (b) relationship between the TOF value of methane formation and Rh particle size at different temperatures[18]

    图  4  CO2加氢制烯烃反应机理示意图

    Figure  4  Conceptual diagram of different reaction routes for the hydrogenation of CO2 to light olefins

    图  5  Na作助剂Fe基催化剂上的CO2加氢制烯烃反应

    Figure  5  Hydrogenation of CO2 to light olefins over Na-promoted Fe-based catalysts

    (a): variance of chain growth probability (FTY) and olefins-to-paraffins (O/P) ratio with the content of Na; (b): CH4, $ {\rm{C}}^{0}_{2-7} $ alkanes and $ {\rm{C}}^{=}_{2-7} $ olefins yields with the Na content[31]

    表  1  CO2加氢制烃类化合物的基础热力学数据

    Table  1  Thermodynamic data for the hydrogenation of CO2 to certain hydrocarbons

    EntryReactionΔrH0298 K/(kJ·mol−1)ΔrG0298 K/(kJ·mol−1)n(H2)/n(CO2)ΔrH0298 K/n(CO2)/(kJ·mol−1)
    1CO2 + 4H2 = CH4 + 2H2O−164.94−113.514−164.94
    22CO2 + 6H2 = C2H4 + 4H2O−127.99−57.423−64.00
    33CO2 + 9H2 = C3H6 + 6H2O−249.96−125.573−83.32
    44CO2 + 12H2 = C4H8 + 8H2O−360.64−179.743−90.16
    56CO2 + 15H2 = C6H6 + 12H2O−457.83−246.982.5−76.31
    67CO2 + 18H2 = C7H8 + 14H2O−580.89−317.392.6−82.98
    78CO2 + 21H2 = p-C8H10 + 16H2O−703.07−381.022.6−87.88
    下载: 导出CSV

    表  2  Fe基催化剂上K掺杂量对于其CO2加氢活性的影响[30]

    Table  2  Effect of K doping amount on the activity of Fe-based catalyst in the hydrogenation of CO2 to light olefins[30]

    K loading w/%CO2 conversion/%Selectivity/%Hydrocarbon distribution/%${\rm{C} }^{=}_{{2-4}}$ yield/%
    COC−HC-oxyCH4${\rm{C} }^{=}_{{2-4}}$${\rm{C} }^{0}_{{2-4}}$${\rm{C} }^{=}_{{5+}}$${\rm{C} }^{0}_{{5+}}$
    05.612880.0620.0380.00.90.0
    15.010891.3452.1480.15.20.1
    2375.8867.82825346.83.47.9
    5387.37815213414191110
    10277.2894.3223913187.29.3
    16258.37913233718216.77.3
    322520719.6243611226.56.3
    下载: 导出CSV

    表  3  部分金属氧化物与SAPO-34复合的双功能催化剂对CO2加氢制烯烃反应性能

    Table  3  Performance of certain bifunctional catalysts composed of metal oxides and SAPO-34 in the hydrogenation of CO2 to light olefins

    CatalystCO2 conv./
    %
    Light olefin sel./
    %
    Ref.
    Zr-InOx/SAPO-343580[47]
    In2O3-ZnZrOx/SAPO-341785[48]
    ZnO-Y2O3/SAPO-342784[49]
    ZnGa2O4/SAPO-341386[50]
    In2O3/SAPO-34357 (yield)[51]
    NiCu-CeO2/SAPO-341577[52]
    下载: 导出CSV

    表  4  用于CO2加氢制芳烃反应的部分双功能催化剂性能对比

    Table  4  Performances of certain bifunctional catalysts in the hydrogenation of CO2 to aromatics

    Catalystt/℃p/MPaGHSV/(mL·g−1·h−1)CO2 conv./%Aromatic sel./%CO sel./%Ref.
    ZnCrOx/Zn-ZSM-5 320 5 2000 19.9 81.1 (in C5+) 70.0 [68]
    ZnCr2O4/H-ZSM-5 350 4 1200 23.1 85.3 27.8 [71]
    ZnO-ZrO2/H-ZSM-5 340 4 7200 16.0 76.0 34.3 [45]
    ZnO-ZrO2/H-ZSM-5 340 3 4800 9.0 70.0 40.0 [67]
    ZnZrOx/H-ZSM-5 315 3 1020 15.5 74.7 35.3 [72]
    ZnZrOx/H-ZSM-5 320 4 1200 14.0 73.0 44.0 [57]
    ZnAlOx/H-ZSM-5 320 3 2000 9.1 73.9 57.4 [66]
    nNa-ZnFeOx/H-ZSM-5 320 3 4000 41.2 75.6 < 20.0 [65]
    Na-Fe/H-ZSM-5 320 1 2400 29.4 54.3 23.1 [60]
    Na-Fe@C/H-ZSM-5 320 3 9000 33.3 50.2 13.3 [61]
    Na-Fe3O4/H-ZSM-5 340 3 4000 45.3 23.5(yield) 11.3 [62]
    Na-Fe3O4/H-ZSM-5 320 3 4000 34.0 44.0 < 15.0 [63]
    Cu-Fe2O3/H-ZSM-5 320 3 1000 57.3 56.6 3.2 [64]
    In2O3/H-ZSM-5 340 3 9000 13.1 14.6 45.0 [69]
    Cr2O3/H-ZSM-5 350 4 1200 14.6 85.5 35.8 [71]
    15Fe-10K-Al2O3/0.8%P-HZSM-5 400 3 3000 36.4 35.5 (incl. CO) 10.2 [70]
    下载: 导出CSV
  • [1] DE S, DOKANIA A, RAMIREZ A, GASCON J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 Utilization[J]. ACS Catal,2020,10(23):14147−14185. doi: 10.1021/acscatal.0c04273
    [2] YANG Q, SKRYPNIK A, MATVIENKO A, LUND H, HOLENA M, KONDRATENKO E V. Revealing property-performance relationships for efficient CO2 hydrogenation to higher hydrocarbons over Fe-based catalysts: Statistical analysis of literature data and Its experimental validation[J]. Appl Catal B: Environ,2021,282:119554. doi: 10.1016/j.apcatb.2020.119554
    [3] WANG W, WANG S, MA X, GONG J. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chem Soc Rev,2011,40(7):3703−3727. doi: 10.1039/c1cs15008a
    [4] ZHANG C, WEI Y-L, CAO P-F, LIN M-C. Energy storage system: Current studies on batteries and power condition system[J]. Renewable Sustainable Energy Rev,2018,82:3091−3106. doi: 10.1016/j.rser.2017.10.030
    [5] LI Y, YANG J, SONG J. Efficient storage mechanisms and heterogeneous structures for building better next-generation lithium rechargeable batteries[J]. Renewable Sustainable Energy Rev,2017,79:1503−1512. doi: 10.1016/j.rser.2017.05.265
    [6] PAN S-Y, CHEN Y-H, FAN L-S, KIM H, GAO X, LING T-C, CHIANG P-C, PEI S-L, GU G. CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction[J]. Nat Sustainability,2020,3(5):399−405.
    [7] OSTOVARI H, STERNBERG A, BARDOW A. Rock ‘N’ use of CO2: Carbon footprint of carbon capture and utilization by mineralization[J]. Sustainable Energy Fuel,2020,4(9):4482−4496. doi: 10.1039/D0SE00190B
    [8] LEE J H, LEE J H, PARK I K, LEE C H. Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments[J]. J CO2 Util,2018,26:522−536. doi: 10.1016/j.jcou.2018.06.007
    [9] RA E C, KIM K Y, KIM E H, LEE H, AN K, LEE J S. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catal,2020,10(19):11318−11345. doi: 10.1021/acscatal.0c02930
    [10] GU S, MARIANOV A N, ZHU Y, JIANG Y. Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution[J]. J Energy Chem,2021,55:219−227. doi: 10.1016/j.jechem.2020.06.067
    [11] HUANG C-H, TAN C-S. A review: CO2 utilization[J]. Aerosol Air Qual Res,2014,14(2):480−499. doi: 10.4209/aaqr.2013.10.0326
    [12] FERNÁNDEZ-DACOSTA C, VAN DER SPEK M, HUNG C R, OREGIONNI G D, SKAGESTAD R, PARIHAR P, GOKAK D T, STRØMMAN A H, RAMIREZ A. Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis[J]. J CO2 Util,2017,21:405−422. doi: 10.1016/j.jcou.2017.08.005
    [13] NEAŢU Ş, MACIÁ-AGULLÓ J A, CONCEPCIÓN P, GARCIA H. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water[J]. J Am Chem Soc,2014,136(45):15969−15976. doi: 10.1021/ja506433k
    [14] SONG Y J, CUI X J, DENG T S, QIN Z F, FAN W B. Solvent effect on the activity of Ru-Co3O4 catalyst for liquid-phase hydrogenation of CO2 into methane[J]. J Fuel Chem Technol,2021,49(2):178−185. doi: 10.1016/S1872-5813(21)60013-0
    [15] DORNER R W, HARDY D R, WILLIAMS F W, DAVIS B H, WILLAUER H D. Influence of gas feed composition and pressure on the catalytic conversion of CO2 to hydrocarbons using a traditional cobalt-based Fischer-Tropsch catalyst[J]. Energy Fuels,2009,23(8):4190−4195. doi: 10.1021/ef900275m
    [16] SHARMA S, HU Z, ZHANG P, MCFARLAND E W, METIU H. CO2 methanation on Ru-doped ceria[J]. J Catal,2011,278(2):297−309. doi: 10.1016/j.jcat.2010.12.015
    [17] GUO Y, MEI S, YUAN K, WANG D J, LIU H C, YAN C H, ZHANG Y W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect[J]. ACS Catal,2018,8(7):6203−6215. doi: 10.1021/acscatal.7b04469
    [18] KARELOVIC A, RUIZ P. Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J]. J Catal,2013,301:141−153. doi: 10.1016/j.jcat.2013.02.009
    [19] KWAK J H, KOVARIK L, SZANYI J. Heterogeneous catalysis on atomically dispersed supported metals: CO2 reduction on multifunctional Pd catalysts[J]. ACS Catal,2013,3(9):2094−2100. doi: 10.1021/cs4001392
    [20] SHIN H H, LU L, YANG Z, KIELY C J, MCINTOSH S. Cobalt catalysts decorated with platinum atoms supported on barium zirconate provide enhanced activity and selectivity for CO2 methanation[J]. ACS Catal,2016,6(5):2811−2818. doi: 10.1021/acscatal.6b00005
    [21] PARASTAEV A, MURAVEV V, HUERTAS OSTA E, VAN HOOF A J F, KIMPEL T F, KOSINOV N, HENSEN E J M. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts[J]. Nat Catal,2020,3(6):526−533. doi: 10.1038/s41929-020-0459-4
    [22] RAHMANI S, REZAEI M, MESHKANI F. Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline Γ-Al2O3 for CO2 methanation[J]. J Ind Eng Chem,2014,20(4):1346−1352. doi: 10.1016/j.jiec.2013.07.017
    [23] VOGT C, GROENEVELD E, KAMSMA G, NACHTEGAAL M, LU L, KIELY C J, BERBEN P H, MEIRER F, WECKHUYSEN B M. Unravelling structure sensitivity in CO2 hydrogenation over nickel[J]. Nat Catal,2018,1(2):127−134. doi: 10.1038/s41929-017-0016-y
    [24] VOGT C, MONAI M, STERK E B, PALLE J, MELCHERTS A E M, ZIJLSTRA B, GROENEVELD E, BERBEN P H, BOEREBOOM J M, HENSEN E J M, MEIRER F, FILOT I A W, WECKHUYSEN B M. Understanding carbon dioxide activation and carbon-carbon coupling over nickel[J]. Nat Commun,2019,10(1):5330. doi: 10.1038/s41467-019-12858-3
    [25] ZHOU G, WU T, XIE H, ZHENG X. Effects of structure on the carbon dioxide methanation performance of Co-based catalysts[J]. Int J Hydrogen Energy,2013,38(24):10012−10018. doi: 10.1016/j.ijhydene.2013.05.130
    [26] QUINDIMIL A, DE-LA-TORRE U, PEREDA-AYO B, GONZáLEZ-MARCOS J A, GONZáLEZ-VELASCO J R. Ni catalysts with La as promoter supported over Y- and Beta- zeolites for CO2 methanation[J]. Appl Catal B: Environ,2018,238:393−403. doi: 10.1016/j.apcatb.2018.07.034
    [27] LI M, AMARI H, VAN VEEN A C. Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites[J]. Appl Catal B: Environ,2018,239:27−35. doi: 10.1016/j.apcatb.2018.07.074
    [28] WANG Q, CHEN Y, LI Z. Research progress of catalysis for low-carbon olefins synthesis through hydrogenation of CO2[J]. J Nanosci Nanotechnol,2019,19(6):3162−3172. doi: 10.1166/jnn.2019.16586
    [29] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: On the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [30] YOU Z, DENG W, ZHANG Q, WANG Y. Hydrogenation of carbon dioxide to light olefins over non-supported iron catalyst[J]. Chin J Catal,2013,34(5):956−963. doi: 10.1016/S1872-2067(12)60559-2
    [31] WEI C, TU W, JIA L, LIU Y, LIAN H, WANG P, ZHANG Z. The evolutions of carbon and iron species modified by Na and their tuning effect on the hydrogenation of CO2 to olefins[J]. Appl Surf Sci,2020,525:146622. doi: 10.1016/j.apsusc.2020.146622
    [32] WANG J, YOU Z, ZHANG Q, DENG W, WANG Y. Synthesis of lower olefins by hydrogenation of carbon dioxide over supported iron catalysts[J]. Catal Today,2013,215:186−193. doi: 10.1016/j.cattod.2013.03.031
    [33] VISCONTI C G, MARTINELLI M, FALBO L, INFANTES-MOLINA A, LIETTI L, FORZATTI P, IAQUANIELLO G, PALO E, PICUTTI B, BRIGNOLI F. CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst[J]. Appl Catal B: Environ,2017,200:530−542. doi: 10.1016/j.apcatb.2016.07.047
    [34] LIANG B, DUAN H, SUN T, MA J, LIU X, XU J, SU X, HUANG Y, ZHANG T. Effect of Na promoter on Fe-based catalyst for CO2 hydrogenation to alkenes[J]. ACS Sustainable Chem Eng,2018,7(1):925−932.
    [35] LIU J, ZHANG A, JIANG X, LIU M, SUN Y, SONG C, GUO X. Selective CO2 hydrogenation to hydrocarbons on Cu-promoted Fe-based catalysts: dependence on Cu-Fe interaction[J]. ACS Sustainable Chem Eng,2018,6(8):10182−10190. doi: 10.1021/acssuschemeng.8b01491
    [36] CHAIPRADITGUL N, NUMPILAI T, KUI CHENG C, SIRI-NGUAN N, SORNCHAMNI T, WATTANAKIT C, LIMTRAKUL J, WITOON T. Tuning interaction of surface-adsorbed species over Fe/K-Al2O3 modified with transition metals (Cu, Mn, V, Zn or Co) on light olefins production from CO2 hydrogenation[J]. Fuel,2021,283:119248. doi: 10.1016/j.fuel.2020.119248
    [37] SATTHAWONG R, KOIZUMI N, SONG C, PRASASSARAKICH P. Bimetallic Fe-Co catalysts for CO2 hydrogenation to higher hydrocarbons[J]. J CO2 Util,2013,3−4:102−106. doi: 10.1016/j.jcou.2013.10.002
    [38] JIANG J, WEN C, TIAN Z, WANG Y, ZHAI Y, CHEN L, LI Y, LIU Q, WANG C, MA L. Manganese-promoted Fe3O4 microsphere for efficient conversion of CO2 to light olefins[J]. Ind Eng Chem Res,2020,59(5):2155−2162. doi: 10.1021/acs.iecr.9b05342
    [39] LIANG B, SUN T, MA J, DUAN H, LI L, YANG X, ZHANG Y, SU X, HUANG Y, ZHANG T. Mn decorated Na/Fe catalysts for CO2 hydrogenation to light olefins[J]. Catal Sci Technol,2019,9(2):456−464. doi: 10.1039/C8CY02275E
    [40] ZHANG Z, WEI C, JIA L, LIU Y, SUN C, WANG P, TU W. Insights into the regulation of fena catalysts modified by Mn promoter and their tuning effect on the hydrogenation of CO2 to light olefins[J]. J Catal,2020,390:12−22. doi: 10.1016/j.jcat.2020.07.020
    [41] ZHANG J, LU S, SU X, FAN S, MA Q, ZHAO T. Selective formation of light olefins from CO2 hydrogenation over Fe-Zn-K catalysts[J]. J CO2 Util,2015,12:95−100. doi: 10.1016/j.jcou.2015.05.004
    [42] OWEN R E, O'BYRNE J P, MATTIA D, PLUCINSKI P, PASCU S I, JONES M D. Promoter effects on iron-silica Fischer-Tropsch nanocatalysts: Conversion of carbon dioxide to lower olefins and hydrocarbons at atmospheric pressure[J]. Chempluschem,2013,78(12):1536−1544. doi: 10.1002/cplu.201300263
    [43] WU T, LIN J, CHENG Y, TIAN J, WANG S, XIE S, PEI Y, YAN S, QIAO M, XU H, ZONG B. Porous graphene-confined Fe-K as highly efficient catalyst for CO2 direct hydrogenation to light olefins[J]. ACS Appl Mater Interfaces,2018,10(28):23439−23443. doi: 10.1021/acsami.8b05411
    [44] LIU Y T, DENG D H, BAO X H. Catalysis for selected C1 chemistry[J]. Chem,2020,6(10):2497−2514. doi: 10.1016/j.chempr.2020.08.026
    [45] ZHOU C, SHI J, ZHOU W, CHENG K, ZHANG Q, KANG J, WANG Y. Highly active ZnO-ZrO2 aerogels integrated with H-ZSM-5 for aromatics synthesis from carbon dioxide[J]. ACS Catal,2019,10(1):302−310.
    [46] LI Z, WANG J, QU Y, LIU H, TANG C, MIAO S, FENG Z, AN H, LI C. Highly selective conversion of carbon dioxide to lower olefins[J]. ACS Catal,2017,7(12):8544−8548. doi: 10.1021/acscatal.7b03251
    [47] GAO P, DANG S, LI S, BU X, LIU Z, QIU M, YANG C, WANG H, ZHONG L, HAN Y, LIU Q, WEI W, SUN Y. Direct production of lower olefins from CO2 conversion via bifunctional catalysis[J]. ACS Catal,2017,8(1):571−578.
    [48] DANG S, LI S, YANG C, CHEN X, LI X, ZHONG L, GAO P, SUN Y. Selective transformation of CO2 and H2 into lower olefins over In2O3-ZnZrOx/SAPO-34 bifunctional catalysts[J]. ChemSusChem,2019,12(15):3582−3591. doi: 10.1002/cssc.201900958
    [49] LI J, YU T, MIAO D, PAN X, BAO X. Carbon dioxide hydrogenation to light olefins over ZnO-Y2O3 and SAPO-34 bifunctional catalysts[J]. Catal Commun,2019,129:105711. doi: 10.1016/j.catcom.2019.105711
    [50] LIU X, WANG M, ZHOU C, ZHOU W, CHENG K, KANG J, ZHANG Q, DENG W, WANG Y. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa2O4 and SAPO-34[J]. Chem Commun,2018,54(2):140−143. doi: 10.1039/C7CC08642C
    [51] NUMPILAI T, WATTANAKIT C, CHAREONPANICH M, LIMTRAKUL J, WITOON T. Optimization of synthesis condition for CO2 hydrogenation to light olefins over In2O3 admixed with SAPO-34[J]. Energy Convers Manage,2019,180:511−523. doi: 10.1016/j.enconman.2018.11.011
    [52] GHASEMI M, MOHAMMADI M, SEDIGHI M. Sustainable production of light olefins from greenhouse gas CO2 over SAPO-34 supported modified cerium oxide[J]. Microporous Mesoporous Mater,2020,297:110029. doi: 10.1016/j.micromeso.2020.110029
    [53] WANG S, ZHANG L, ZHANG W, WANG P, QIN Z, YAN W, DONG M, LI J, WANG J, HE L, OLSBYE U, FAN W. Selective conversion of CO2 into propene and butene[J]. Chem,2020,6(12):3344−3363. doi: 10.1016/j.chempr.2020.09.025
    [54] ALI S S, ZAIDI H A. Experimental and kinetic modeling studies of methanol transformation to hydrocarbons using zeolite-based catalysts: A review[J]. Energy Fuels,2020,34(11):13225−13246. doi: 10.1021/acs.energyfuels.0c02373
    [55] HWANG A, BHAN A. Deactivation of zeolites and zeotypes in methanol-to-hydrocarbons catalysis: Mechanisms and circumvention[J]. Acc Chem Res,2019,52(9):2647−2656. doi: 10.1021/acs.accounts.9b00204
    [56] KASIPANDI S, BAE J W. Recent advances in direct synthesis of value-added aromatic chemicals from syngas by cascade reactions over bifunctional catalysts[J]. Adv Mater,2019,31(34):1803390. doi: 10.1002/adma.201803390
    [57] LI Z, QU Y, WANG J, LIU H, LI M, MIAO S, LI C. Highly selective conversion of carbon dioxide to aromatics over tandem catalysts[J]. Joule,2019,3(2):570−583. doi: 10.1016/j.joule.2018.10.027
    [58] HONG S Y, CHUN D H, YANG J I, JUNG H, LEE H T, HONG S, JANG S, LIM J T, KIM C S, PARK J C. A new synthesis of carbon encapsulated Fe5C2 nanoparticles for high-temperature Fischer-Tropsch synthesis[J]. Nanoscale,2015,7(40):16616−16620. doi: 10.1039/C5NR04546K
    [59] XU Y, WANG T, SHI C, LIU B, JIANG F, LIU X. Experimental investigation on the two-sided effect of acidic HZSM-5 on the catalytic performance of composite Fe-based Fischer-Tropsch catalysts and HZSM-5 zeolite in the production of aromatics from CO2/H2[J]. Ind Eng Chem Res,2020,59(18):8581−8591. doi: 10.1021/acs.iecr.0c00992
    [60] XU Y, SHI C, LIU B, WANG T, ZHENG J, LI W, LIU D, LIU X. Selective production of aromatics from CO2[J]. Catal Sci Technol,2019,9(3):593−610. doi: 10.1039/C8CY02024H
    [61] WANG Y, KAZUMI S, GAO W, GAO X, LI H, GUO X, YONEYAMA Y, YANG G, TSUBAKI N. Direct conversion of CO2 to aromatics with high yield via a modified Fischer-Tropsch synthesis pathway[J]. Appl Catal B: Environ,2020,269:118792. doi: 10.1016/j.apcatb.2020.118792
    [62] WEN C, JIANG J, CHILIU C, TIAN Z, XU X, WU J, WANG C, MA L. Single-step selective conversion of carbon dioxide to aromatics over Na-Fe3O4/hierarchical HZSM-5 zeolite catalyst[J]. Energy Fuels,2020,34(9):11282−11289. doi: 10.1021/acs.energyfuels.0c02120
    [63] WEI J, GE Q, YAO R, WEN Z, FANG C, GUO L, XU H, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174. doi: 10.1038/ncomms15174
    [64] SONG G, LI M, YAN P, NAWAZ M A, LIU D. High conversion to aromatics via CO2-Ft over a Co-reduced Cu-Fe2O3 Catalyst integrated with HZSM-5[J]. ACS Catal,2020,10(19):11268−11279. doi: 10.1021/acscatal.0c02722
    [65] CUI X, GAO P, LI S, YANG C, LIU Z, WANG H, ZHONG L, SUN Y. Selective production of aromatics directly from carbon dioxide hydrogenation[J]. ACS Catal,2019,9(5):3866−3876. doi: 10.1021/acscatal.9b00640
    [66] NI Y, CHEN Z, FU Y, LIU Y, ZHU W, LIU Z. Selective conversion of CO2 and H2 into aromatics[J]. Nat Commun,2018,9(1):3457. doi: 10.1038/s41467-018-05880-4
    [67] ZHANG X, ZHANG A, JIANG X, ZHU J, LIU J, LI J, ZHANG G, SONG C, GUO X. Utilization of CO2 for aromatics production over ZnO/ZrO2-ZSM-5 tandem catalyst[J]. J CO2 Util,2019,29:140−145. doi: 10.1016/j.jcou.2018.12.002
    [68] ZHANG J, ZHANG M, CHEN S, WANG X, ZHOU Z, WU Y, ZHANG T, YANG G, HAN Y, TAN Y. Hydrogenation of CO2 into aromatics over a ZnCrOx-zeolite composite catalyst[J]. Chem Commun,2019,55(7):973−976. doi: 10.1039/C8CC09019J
    [69] GAO P, LI S, BU X, DANG S, LIU Z, WANG H, ZHONG L, QIU M, YANG C, CAI J, WEI W, SUN Y. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst[J]. Nat Chem,2017,9(10):1019−1024. doi: 10.1038/nchem.2794
    [70] DAI C, ZHAO X, HU B, ZHANG J, HAO Q, CHEN H, GUO X, MA X. Hydrogenation of CO2 to aromatics over Fe-K/alkaline Al2O3 and P/ZSM-5 tandem catalysts[J]. Ind Eng Chem Res,2020,59(43):19194−191202. doi: 10.1021/acs.iecr.0c03598
    [71] GAO W, GUO L, CUI Y, YANG G, HE Y, ZENG C, TAGUCHI A, ABE T, MA Q, YONEYAMA Y, TSUBAKI N. Selective conversion of CO2 into para-xylene over a ZnCr2O4 -ZSM-5 Catalyst[J]. ChemSusChem,2020,13(24):6541−6545. doi: 10.1002/cssc.202002305
    [72] WANG T, YANG C, GAO P, ZHOU S, LI S, WANG H, SUN Y. ZnZrOx integrated with chain-like nanocrystal HZSM-5 as efficient catalysts for aromatics synthesis from CO2 hydrogenation[J]. Appl Catal B: Environ,2021,286:119929. doi: 10.1016/j.apcatb.2021.119929
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  18
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-06-03
  • 网络出版日期:  2021-06-29

目录

    /

    返回文章
    返回