留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究

宋传林 任科 滕召才 王梅梅 张继刚 韩奎华 龙慎伟 朱应泉

宋传林, 任科, 滕召才, 王梅梅, 张继刚, 韩奎华, 龙慎伟, 朱应泉. 生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60129-9
引用本文: 宋传林, 任科, 滕召才, 王梅梅, 张继刚, 韩奎华, 龙慎伟, 朱应泉. 生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60129-9

生物质飞灰未燃尽炭制备活性炭及其超级电容性能研究

doi: 10.1016/S1872-5813(21)60129-9
基金项目: 山东省自然科学基金(ZR2017MEE010);山东大学基本科研经费自然科学学科交叉培育项目(2016JC005)
详细信息
    通讯作者:

    韩奎华(1978-)男,教授,博士,研究方向为生物质热转化,联系地址:济南市经十路17923号山东大学能源与动力工程学院(250061),E-mail:hankh@163.com

  • 中图分类号: TM53; TQ424.1

  • 摘要: 生物质燃料在锅炉中经过热解和燃烧后,飞灰中含有孔隙丰富的未燃尽炭。但其孔隙率和比表面积无法满足商用超级电容炭的要求,改善材料孔隙结构的活化方法成为未燃尽炭提质改性的关键。本研究通过对筛分粒径 > 0.2 mm的未燃尽炭进行KOH一步活化处理后发现,在浸渍比3.5:1时活性炭拥有较大的比表面积(1982 m2/g),且在电流密度1 A/g时比电容可达207 F/g。以上结果表明,未燃尽炭基活性炭制备的电极双电层超级电容性能优良,而为生物质飞灰的高附加值利用提供了参考。
  • 图  1  未燃尽碳基活性炭的孔结构特性(a)总比表面积和总孔容;(b)微孔比表面积和微孔孔容随浸渍比的变化趋势图;(c)活性炭样品的N2吸附-解吸附等温曲线;(d)活性炭样品的孔径分布图

    Figure  1  Porous Characterizations of HYC-n. (a) The trend of total specific surface areas, total pore volumes; (b) micropore specific surface areas, volumes change by increase of the impregnation ratios; (c) N2 adsorption-desorption isotherm curves of activated carbon samples; (d) Pore size distribution of activated carbon samples

    Figure  2  (a) X-ray diffraction pattern of HYC-3.5 and HYC-0; (b) Raman spectrum analysis of activated carbon sample HYC-3.5 and HYC-0

    图  3  (a) 粒径>0.2 mm未燃尽炭(b); (c);(d) HYC-3.5在不同倍率下的SEM图

    Figure  3  (a) SEM images of unburned carbon with particle size> 0.2 mm (b); (c); (d) HYC -3.5 at different magnifications

    图  4  (a) HYC-3.5的循环伏安特性曲线; (b)HYC-3.5在电流密度5A/g时的循环性能

    Figure  4  (a) Rate performance of HYC-n; (b) Constant-current charge-discharge curves of HYC-3.5 at different current densities

    图  5  (a) HYC-3.5的循环伏安特性曲线; (b)HYC-3.5在电流密度5A/g时的循环性能

    Figure  5  (a) Cyclic voltametric characteristics of electrode prepared by activated carbon sample HYC-3.5; (b) cyclic performance of activated carbon sample HYC-3.5 at a current density of 5 A/g

    图  6  HYC-3.5的能量密度与功率密度

    Figure  6  The energy density and power density of HYC-3.5

    Table  1  The proximate analysis of the biomass fly ash and the unburned carbon with the particle sizes > 0.2 mm

    Sampleproximate analysis (W/%, ad)wt%
    MadAadVadFCad
    Biomass fly ash0.8687.378.513.26100
    Unburned carbon3.1854.277.2235.335.34
    Mad: Moisture,Aad: Ash,Vad: Volatiles,FCad: Fixed carbon
    下载: 导出CSV

    Table  2  The element analysis of the unburned carbon with the particle sizes > 0.2 mm

    Sampleultimate analysis (W/%, ad)
    CHONS
    Unburned carbon34.920.7790.470.6215.76
    下载: 导出CSV

    Table  3  Textural properties of different samples at different impregnation ratios

    SampleSBET(m2·g−1)VT(cm3·g−1)SBETmicro(m2·g−1)Vmicro(cm3·g−1)
    HYC-04060.411510.186
    HYC-1.510620.7635870.477
    HYC-214080.92010400.605
    HYC-2.514640.94110380.623
    HYC-317101.15210480.739
    HYC-3.519821.27311190.813
    HYC-419971.2699560.784
    HYC-4.520731.3936280.761
    下载: 导出CSV

    Table  4  Specific capacitance of activated carbon samples at different current densities

    SampleSpecific capacitance(F·g−1
    0.1A·g−10.5A·g−11A·g−12A·g−15A·g−110A·g−1
    HYC-1.5136128125121118115
    HYC-2158145141136131127
    HYC-2.5160147143137133129
    HYC-3196178175171164161
    HYC-3.5233212207202195190
    HYC-4190173169166157155
    HYC-4.5176163158153150147
    下载: 导出CSV
  • [1] ZHANG J L, ZHANG W F, HAN M F, PANG J, XIANG Y, CAO G P, YANG Y S. Synthesis of nitrogen-doped polymeric resin-derived porous carbon for high performance supercapacitors[J]. Microporous Mesoporous Mater,2018,270:204. doi: 10.1016/j.micromeso.2018.05.020
    [2] ZAKA A, HAYAT K, MITTAL V. Recent trends in the use of three-dimensional graphene structures for supercapacitors[J]. ACS Appl Electron Mater,2021,3(2):574. doi: 10.1021/acsaelm.0c00953
    [3] LIAO G F, GONG Y, ZHANG L, GAO H Y, YANG G J, FANG B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the "holy grail" for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080. doi: 10.1039/C9EE00717B
    [4] GAO F, QU J Y, ZHAO Z B, WANG Z Y, QIU J S. Nitrogen-doped activated carbon derived from prawn shells for high-performance supercapacitors[J]. Electrochim Acta,2016,190:1134. doi: 10.1016/j.electacta.2016.01.005
    [5] LIU G W, CHEN T Y, CHUANG C H, LIN H P, HSU C H. Hierarchical micro/mesoporous carbons synthesized with a zno template and petroleum pitch via a solvent-free process for a high-performance supercapacitor[J]. ACS Omega,2017,2(5):2106. doi: 10.1021/acsomega.7b00308
    [6] QU W H, GUO Y B, SHEN W Z, LI W C. Using asphaltene supermolecules derived from coal for the preparation of efficient carbon electrodes for supercapacitors[J]. J Phys Chem C,2016,120(28):15105. doi: 10.1021/acs.jpcc.6b05136
    [7] WANG T, WANG Y N, ZHANG D, HU X M, ZHANG L P, ZHAO C, HE Y, -S, ZHANG W M, W, YANG N T, MA Z F. Structural tuning of a flexible and porous polypyrrole film by a template-assisted method for enhanced capacitance for supercapacitor applications[J]. ACS Appl Mater Interfaces,2021,13(15):17726−17735. doi: 10.1021/acsami.1c03553
    [8] ZHANG Q, HAN K H, LI S J, LI M, LI J X, REN K. Synthesis of garlic skin-derived 3D hierarchical porous carbon for high-performance supercapacitors[J]. Nanoscale,2018,10(5):2427. doi: 10.1039/C7NR07158B
    [9] 梁光兵, 李艳红, 訾昌毓, 张远琴, 彭昭霞, 赵榆林, 赵文波. 生物质发电厂飞灰制备生物炭的研究[J]. 生物质化学工程,2020,54(2):21. doi: 10.3969/j.issn.1673-5854.2020.02.004

    LIANG Guang-bing, LI Yan-hong, ZI Chang-yu, ZHANG Yuan-qin, PENG Zhao-xia, ZHAO Yu-lin, ZHAO Wen-bo. Fly ash from biomass power plant to prepare biochar[J]. Biomass Chemical Engineering,2020,54(2):21. doi: 10.3969/j.issn.1673-5854.2020.02.004
    [10] 屈文麒; 刘晶; 袁锦洲; 刘洋; 郑楚光. NO对未燃尽炭吸附汞影响的机理研究[J]. 工程热物理学报,2010,31(3):523.

    QU Wen-qi, LIU Jing, YUAN Jin-Zhou, LIU Yang, ZHENG Chu-guang. Effect of nitric oxide on mercury adsorbtion capacity on unburned carbon[J]. J. Eng. Thermophys,2010,31(3):523.
    [11] DUTTA S, BHAUMIK, A WU, K. C. W. Hierarchically porous carbon derived from polymers and biomass: effect of interconnected pores on energy applications[J]. Energy Environ Sci,2014,7(11):3574. doi: 10.1039/C4EE01075B
    [12] 黄珊珊; 赵小燕; 谢凤梅; 曹景沛; 魏贤勇; 宝田恭之. 双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备[J]. 燃料化学学报,2014,42(5):539.

    HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong, TAKARADA Takayuki. Preparation of hyper coal-based activated carbons for electric double layer capacitor[J]. J Fuel Chem Technol,2014,42(5):539.
    [13] LI S J, HAN K H, SI P C, LI J X, LU C M. Improvement in the pore structure of gulfweed–based activated carbon via two–step acid treatment for high performance supercapacitors[J]. J Electroanal Chem,2018,820:103. doi: 10.1016/j.jelechem.2018.05.003
    [14] LI S J, HAN K H, LI J X, LI M, LU C M. Preparation and characterization of super activated carbon produced from gulfweed by KOH activation[J]. Microporous Mesoporous Mater,2017,243:291. doi: 10.1016/j.micromeso.2017.02.052
    [15] LI S J, HAN K H, SI P C, LI J X, LU C M. High–performance activated carbons prepared by koh activation of gulfweed for supercapacitors[J]. Int J Electrochem Sci,2018,.2:1728−1743.
    [16] CAO Y, HAN K H, TENG Z C, LI J X, JI T T, LI X, ZHANG J G. Optimized synergistic preparation of nitrogen-doped porous carbon derived from gasified carbon for supercapacitors[J]. J Alloys Compd,2021,860:158385. doi: 10.1016/j.jallcom.2020.158385
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  11
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-28
  • 修回日期:  2021-06-10
  • 网络出版日期:  2021-07-07

目录

    /

    返回文章
    返回