留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation

GHAEDI Mohammad IZADBAKHSH Ali

GHAEDIMohammad, IZADBAKHSHAli. HZSM-5纳米颗粒中Ca含量对甲醇制烯烃反应及积炭生成的影响[J]. 燃料化学学报(中英文), 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5
引用本文: GHAEDIMohammad, IZADBAKHSHAli. HZSM-5纳米颗粒中Ca含量对甲醇制烯烃反应及积炭生成的影响[J]. 燃料化学学报(中英文), 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5
GHAEDI Mohammad, IZADBAKHSH Ali. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5
Citation: GHAEDI Mohammad, IZADBAKHSH Ali. Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation[J]. Journal of Fuel Chemistry and Technology, 2021, 49(10): 1468-1486. doi: 10.1016/S1872-5813(21)60130-5

HZSM-5纳米颗粒中Ca含量对甲醇制烯烃反应及积炭生成的影响

doi: 10.1016/S1872-5813(21)60130-5
详细信息
  • 中图分类号: O643.3

Effects of Ca content on the activity of HZSM-5 nanoparticles in the conversion of methanol to olefins and coke formation

More Information
  • 摘要: 随着经济发展和能源需求不断增加,资源合理配置显得尤为重要。以天然气为原料的甲醇制烯烃(MTO)技术的发展,为弥合日益扩大的低碳烯烃供需矛盾提供了一条可替代传统石油化工路线、有广阔应用前景的合成路径。酸性调节对MTO催化剂的催化性能及积炭问题的解决至关重要。本研究通过改变Ca含量调节催化剂的酸性并测定系列Ca改性HZSM-5催化剂(9 ≤ Ca/Al ≤ 54)的甲醇转化率和低碳烯烃选择性以及催化剂稳定性,研究了Ca含量对150 nm Si/Al比为230的HZSM-5纳米颗粒催化甲醇制烯烃性能及积炭生成的影响。 利用阳离子引入策略调节Lewis酸和Bronsted酸的比例及酸强度,研究了不同Ca离子含量对HZSM-5催化剂催化MTO转化的影响。首先,合成NaZSM-5纳米颗粒并通过离子交换法制备HZSM-5分子筛,然后采用浸渍法制备不同Ca/Al比的Ca-HZSM-5催化剂。其次,分别在390、440以及490 ℃温度条件及不同的空速条件下对常压固定床中系列Ca改性HZSM-5催化剂进行催化性能测试。在490 ℃的温度条件及空速为9 h−1条件下对HZSM-5催化剂和Ca27-HZSM-5催化剂进行了约100 h的稳定性测试。采用配备HP-Plot Q 色谱柱 (30 m × 0.53 mm × 40 μm)、FID检测器的气相色谱仪(Agilent 7890)在线分析气相产物并通过室温冷凝对液相产物进行离线分析。最后,利用XRD、BET、FESEM、IR、NH3-TPD、TGA手段对Ca改性HZSM-5催化剂进行表征,探究催化剂的构成和催化剂催化性能以及催化剂积炭失活之间的关系。 从该系列Ca-HZSM-5催化剂催化性能结果结合系列表征结果可以看出,Ca含量对甲醇制烯烃反应及积炭生成影响结果如下:(1)通过调节Ca含量,可获得催化MTO反应性能最佳的Ca27-HZSM-5 (Ca/Al = 27)催化剂,该催化剂在490 ℃反应条件下的乙烯产率为0.11,丙烯产率为0.14。通过FT-IR、吡啶红外吸附以及 NH3-TPD结果分析可得,Ca27-HZSM-5催化剂在该类Ca改性催化剂中具有最多的易接触Lewis酸性位点,同时Lewis酸在总酸位点中占比最大并且酸强度也有所增强。(2)通过热重分析及反应后催化剂颜色变化可以推断Ca掺杂的HZSM-5催化剂可显著降低催化剂上积炭的生成。(3)Ca掺杂HZSM-5催化剂上其低碳烯烃产率在研究温度范围内不受温度变化的影响并且该Ca掺杂HZSM-5催化剂相较于未掺杂的HZSM-5催化剂乙烯和丙烯的产率得到了提高。(4)适当的Ca掺杂HZSM-5催化剂上较轻的芳香碳在积炭中的占比较大。 通过引入阳离子调节分子筛催化剂的酸性是优化该类催化剂催化脱水反应的有效手段。基于此,本研究通过掺杂Ca阳离子优化了HZSM-5分子筛催化MTO反应的性能。由于Ca掺杂,降低了催化剂的酸性从而抑制了质子转移反应并显著降低了催化剂酸位点上齐聚反应的进行进而抑制芳烃循环路径低碳烯烃的生成。适当数量的Ca掺杂,由于最弱的空间位阻效应,暴露出更多易接触Lewis酸位点使得该催化剂具有良好的活性和较高的低碳烯烃选择性。在研究的温度范围内,Ca掺杂HZSM-5催化剂催化MTO反应的能垒降低。同时Ca掺杂可适当降低积炭的生成速率,长时间进行催化反应仍会导致积炭的生成。
  • FIG. 966.  FIG. 966.

    FIG. 966. 

    Figure  1  XRD patterns of the prepared samples

    Figure  2  N2 adsorption-desorption isotherms of the prepared catalysts

    Figure  3  NH3-TPD profiles of HZSM-5 and Ca incorporated HZSM-5 zeolites

    Figure  4  Methanol conversion versus temperature for the prepared catalysts in the MTO conversion, p = 100 kPa, methanol WHSV = 8 and 4 h−1, argon flow = 20 mL/min

    Figure  5  Light olefin yield versus temperature for the prepared catalysts in the MTO conversion, p = 100 kPa, methanol WHSV = 8 and 4 h−1, argon flow = 20 mL/min;(a): ethylene; (b): propylene

    Figure  6  Methanol conversion and selectivity of olefins versus time for the prepared catalysts in the MTO conversion, p = 100 kPa, catalyst weight = 0.1 g, argon flow = 20 mL/min, regenerated HZSM-5 was used in this test which its initial conversion (57%) is less than that of fresh sample (79%) the HZSM-5 catalyst in this test was regenerated at 650 °C for 5 h

    Figure  7  Thermogravimetric and differential weight loss profiles of (a) the spent Ca27-HZSM-5-LT and (b) Ca54-HZSM-5 catalysts

    Table  1  Pore structure properties of the prepared catalysts obtained from N2 Adsorptive isotherm

    SampleCumulative-micropore
    volume/(cm3·g−1)
    BET surface
    area/(m2·g−1)
    t-plot
    micropore
    area/(m2·g−1)
    t-plot ext.
    surface
    area/(m2·g−1)
    Mesopore I
    diameter/nm
    Mesopore II
    diameter/nm
    Micropore
    diameter/nm
    HZSM-50.129−0.071193152422.6110.50
    Ca9-HZSM-50.097−0.049139105342.8110.50
    Ca27-HZSM-50.112−0.065165139272.8110.52
    Ca54-HZSM-50.083−0.048120103173.2110.55
    下载: 导出CSV

    Table  2  Elemental composition of the prepared catalysts obtained from EDX spectra

    ElementAtomic/%
    HZSM-5Ca9-HZSM-5Ca27-HZSM-5Ca54-HZSM-5
    O68.6672.4871.2571.61
    Al0.100.200.120.19
    Si31.1826.1926.3521.68
    Ca1.142.276.52
    Si/Al312131220114
    Ca/Al5.71934
    下载: 导出CSV

    Table  3  Center area of FT-IR BAS and LAS peaks of FT-IR spectra of pyridine-adsorbed catalysts and their distribution

    SampleAcid Site TypeCenter/cm−1AreaBAS/LAS ratio*LAS/%
    HZSM-5BAS15490.160822.74.2
    LAS14540.0109
    Ca9-HZSM-5BAS15400.12482.1631.6
    LAS14560.0889
    Ca27-HZSM-5BAS15470.16320.27678.3
    LAS14570.9101
    Ca54-HZSM-5BAS15460.02530.22281.8
    LAS14560.1754
    *: calculated by taking the ratio of molar absorption FT-IR coefficients εLAS/εBAS = 1.5
    下载: 导出CSV

    Table  4  Maximum temperature, area and height of deconvoluted peaks in the NH3-TPD profiles of the prepared catalysts

    Peak 1Peak 2Peak 3
    HZSM-5centerline temp/°C161426575
    area117727211316
    height212113.8
    Ca9-HZSM-5centerline temp/°C158397468
    area251562636440
    height334277
    Ca27-HZSM-5centerline temp/°C160419518
    area51452403715611
    height53110217
    Ca54-HZSM-5centerline temp/°C162358408518
    area18787255675low
    height293513low
    下载: 导出CSV

    Table  5  Methanol conversion, selectivity and yield of ethylene, propylene and C2−C4 olefins obtained by the prepared catalysts at the different reaction temperatures and space velocities of methanol feed stream

    CatalystTemp./°CWHSV/
    h−1
    ConversionEthylene
    selectivity (yield)
    Propylene
    selectivity (yield)
    Selectivity to
    $ {\bf{C}^{=}_{2}+{{C}}^{=}_{3}} $
    Yield of
    $ {\bf{C}^{=}_{2}+{{C}}^{=}_{3}} $
    $ {\bf{C}^{=}_{3}/{{C}}^{=}_{2} } $
    $ {\rm{ratio}} $
    HZSM-54905.550.940.26 (0.12)0.45 (0.14)0.710.261.15
    4405.550.870.22 (0.10)0.42 (0.12)0.640.221.27
    3905.550.750.20 (0.08)0.39 (0.10)0.590.181.30
    4903.270.960.28 (0.13)0.48 (0.15)0.760.281.14
    Ca(9)-HZSM-54905.550.910.26 (0.12)0.44 (0.13)0.700.251.13
    4405.550.850.23 (0.10)0.41 (0.12)0.640.221.19
    3905.550.710.21 (0.07)0.39 (0.09)0.600.161.24
    4903.270.930.32 (0.15)0.51 (0.16)0.830.311.06
    Ca(27)-HZSM-54904.50.850.26 (0.11)0.51 (0.14)0.770.251.31
    4404.80.840.24 (0.10)0.48 (0.13)0.720.231.33
    3905.00.850.24 (0.10)0.46 (0.13)0.700.231.28
    4903.960.970.30 (0.14)0.57 (0.18)0.870.321.27
    Ca(54)-HZSM-54906.100.660.27 (0.09)0.55 (0.12)0.820.211.36
    4405.880.720.25 (0.09)0.52 (0.12)0.770.211.39
    3905.000.660.22 (0.07)0.50 (0.11)0.720.181.16
    4903.600.770.34 (0.13)0.66 (0.17)1.000.301.29
    下载: 导出CSV
  • [1] MIN H-K, PARK M B. Hong SB methanol-to-olefin conversion over H-MCM-22 and H-ITQ-2 zeolites[J]. J Catal,2010,271(2):186−194. doi: 10.1016/j.jcat.2010.01.012
    [2] KOEMPEL H, LIEBNER W. Lurgi's methanol to propylene (MTP): Report on a successful commercialisation[R]. Stud Surf Sci Catal, 2007: 261−267.
    [3] COBB J. New Zealand synfuel: The Story of the World’s First Natural Gas to Gasoline Plant[M] cobb. Auckland: Horwood Publications, 1995.
    [4] CHEN J Q, BOZZANO A, GLOVER B, FUGLERUD T, KVISLE S. Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process[J]. Catal Today,2005,106(1/4):103−107. doi: 10.1016/j.cattod.2005.07.178
    [5] DING J, HUA W. Game changers of the C3 value chain: Gas, coal, and biotechnologies[J]. Chem Eng Technol,2013,36(1):83−90. doi: 10.1002/ceat.201200297
    [6] JOHANSSON E. Process integration study of biomass-to-methanol (via gasification) and methanol-to-olefins (MTO) processes in an existing steam cracker plant[D]. Gothenburg: Chalmers University of Technology: 2013.
    [7] World’s largest single-train methanol-to-olefins plant now operating[OL/EB] https://www.chemengonline.com/worlds-largest-single-train-methanol-to-olefins-plant-now-operating/#disqus_thread, 2018.
    [8] JAVDANI A, AHMADPOUR J, YARIPOUR F. Nano-sized ZSM-5 zeolite synthesized via seeding technique for methanol conversions: A review[J]. Microporous Mesoporous Mater,2019,284:443−458. doi: 10.1016/j.micromeso.2019.04.063
    [9] SHAO J, FU T, MA Q, MA Z, ZHANG C, LI Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons[J]. Microporous Mesoporous Mater,2019,273:122−132. doi: 10.1016/j.micromeso.2018.07.007
    [10] ZHANG S, GONG Y, ZHANG L, LIU Y, DOU T, XU J, DENG F. Hydrothermal treatment on ZSM-5 extrudates catalyst for methanol to propylene reaction: Finely tuning the acidic property[J]. Fuel Process Technol,2015,129:130−138. doi: 10.1016/j.fuproc.2014.09.006
    [11] SEDIGHI M, BAHRAMI H, TOWFIGHI J. Kinetic modeling formulation of the methanol to olefin process: Parameter estimation[J]. J Ind Eng Chem,2014,20(5):3108−3114. doi: 10.1016/j.jiec.2013.11.052
    [12] MORES D, STAVITSKI E, KOX MH, KORNATOWSKI J, OLSBYE U, WECKHUYSEN B M. Space-and time-resolved in-situ spectroscopy on the coke formation in molecular sieves: Methanol-to-olefin conversion over H-ZSM-5 and H-SAPO-34[J]. Chem Eur J,2008,14(36):11320−11327. doi: 10.1002/chem.200801293
    [13] ZHOU J, ZHI Y, ZHANG J, LIU Z, ZHANG T, HE Y, ZHENG A, YE M, WEI Y, LIU Z. Presituated “coke”-determined mechanistic route for ethene formation in the methanol-to-olefins process on SAPO-34 catalyst[J]. J Catal,2019,377:153−162. doi: 10.1016/j.jcat.2019.06.014
    [14] FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun,2009,10(12):1582−1585. doi: 10.1016/j.catcom.2009.04.021
    [15] WU W, WEITZ E. Modification of acid sites in ZSM-5 by ion-exchange: An in-situ FTIR study[J]. Appl Surf Sci,2014,316:405−415. doi: 10.1016/j.apsusc.2014.07.194
    [16] YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24:44−47. doi: 10.1016/j.catcom.2012.03.013
    [17] KUMAR N, LINDFORS L-E. Modification of the ZSM-5 zeolite using Ga and Zn impregnated silica fibre for the conversion of n-butane into aromatic hydrocarbons[J]. Catal Lett,1996,38(3/4):239−244. doi: 10.1007/BF00806575
    [18] GAYUBO AG, BENITO PL, AGUAYO AT, OLAZAR M, BILBAO J. Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons[J]. J Chem Technol Biotechnol: Int Res Process, Environ Clean Technol,1996,65(2):186−192.
    [19] KOOYMAN P, VAN DER WAAL P, VAN BEKKUM H. Acid dealumination of ZSM-5[J]. Zeolites,1997,18(1):50−53. doi: 10.1016/S0144-2449(96)00106-6
    [20] HE Y, YAN L, LIU Y, LIU Y, BAI Y, WANG J, LI F. Effect of SiO2/Al2O3 ratios of HZSM-5 zeolites on the formation of light aromatics during lignite pyrolysis[J]. Fuel Process Technol,2019,188:70−78. doi: 10.1016/j.fuproc.2019.02.004
    [21] LI J, HAN D, HE T, LIU G, ZI Z, WANG Z, WU J, WU J. Nanocrystal H [Fe, Al] ZSM-5 zeolites with different silica-alumina composition for conversion of dimethyl ether to gasoline[J]. Fuel Process Technol,2019,191:104−110. doi: 10.1016/j.fuproc.2019.03.029
    [22] FU T, MA Z, WANG Y, SHAO J, MA Q, ZHANG C, CUI L, LI Z. Si/Al ratio induced structure evolution during desilication-recrystallization of silicalite-1 to synthesize nano-ZSM-5 catalyst for MTH reaction[J]. Fuel Process Technol,2019,194:106−122.
    [23] JUAN S, FU T-J, CHANG J-W, WAN W-L, QI R-Y, ZHONG L. Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. J Fuel Chem Technol,2017,45(1):75−83. doi: 10.1016/S1872-5813(17)30009-9
    [24] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized H [Zn, Al] ZSM-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mater,2011,143(2/3):435−442. doi: 10.1016/j.micromeso.2011.03.029
    [25] GONGWEI W, MULIANG Y, XINGCHUN W, GUOQUAN C. Process for the conversion of methanol to light olefins and catalyst used for such process: US, 5367100 [P].1994-11-22.
    [26] PAPARI S, MOHAMMADREZAEI A, ASADI M, GOLHOSSEINI R, NADERIFAR A. Comparison of two methods of iridium impregnation into HZSM-5 in the methanol to propylene reaction[J]. Catal Commun,2011,16(1):150−154. doi: 10.1016/j.catcom.2011.09.024
    [27] MOHAMMADREZAEI A, PAPARI S, ASADI M, NADERIFAR A, GOLHOSSEINI R. Methanol to propylene: the effect of iridium and iron incorporation on the HZSM-5 catalyst[J]. Front Chem Sci Eng,2012,6(3):253−258. doi: 10.1007/s11705-012-0902-4
    [28] JIANG X, SU X, BAI X, LI Y, YANG L, ZHANG K, ZHANG Y, LIU Y, WU W. Conversion of methanol to light olefins over nanosized [Fe, Al] ZSM-5 zeolites: Influence of Fe incorporated into the framework on the acidity and catalytic performance[J]. Microporous Mesoporous Mater,2018,263:243−250. doi: 10.1016/j.micromeso.2017.12.029
    [29] LIU J, ZHANG C, SHEN Z, HUA W, TANG Y, SHEN W, YUE Y, XU H. Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst[J]. Catal Commun,2009,10(11):1506−1509. doi: 10.1016/j.catcom.2009.04.004
    [30] AL-JARALLAH A M, EL-NAFATY U A, ABDILLAHI M M. Effects of metal impregnation on the activity, selectivity and deactivation of a high silica MFI zeolite when converting methanol to light alkenes[J]. Appl Catal A: Gen,1997,154(1/2):117−127. doi: 10.1016/S0926-860X(96)00379-1
    [31] BUSCA G. Acidity and basicity of zeolites: A fundamental approach[J]. Microporous Mesoporous Mater,2017,254:3−16. doi: 10.1016/j.micromeso.2017.04.007
    [32] DAHL IM, KOLBOE S. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catal Lett,1993,20(3/4):329−336. doi: 10.1007/BF00769305
    [33] DAHL IM, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol[J]. J Catal,1994,149(2):458−464. doi: 10.1006/jcat.1994.1312
    [34] DAHL IM, KOLBOE S. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: 2. Isotopic labeling studies of the co-reaction of propene and methanol[J]. J Catal,1996,161(1):304−309. doi: 10.1006/jcat.1996.0188
    [35] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [36] DAI W, WANG C, DYBALLA M, WU G, GUAN N, LI L, XIE Z, HUNGER M. Understanding the early stages of the methanol-to-olefin conversion on H-SAPO-34[J]. ACS Catal,2014,5(1):317−326.
    [37] ILIAS S, BHAN A. Tuning the selectivity of methanol-to-hydrocarbons conversion on H-ZSM-5 by co-processing olefin or aromatic compounds[J]. J Catal,2012,290:186−192. doi: 10.1016/j.jcat.2012.03.016
    [38] LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: reaction pathway is related to the framework aluminum siting[J]. ACS Catal,2016,6(11):7311−7325. doi: 10.1021/acscatal.6b01771
    [39] LI J, WEI Y, CHEN J, XU S, TIAN P, YANG X, LI B, WANG J, LIU Z. Cavity controls the selectivity: Insights of confinement effects on MTO reaction[J]. ACS Catal,2014,5(2):661−665.
    [40] BJØRGEN M, BONINO F, KOLBOE S, LILLERUD K-P, ZECCHINA A, BORDIGA S. Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta[J]. J Am Chem Soc,2003,125(51):15863−15868. doi: 10.1021/ja037073d
    [41] SASSI A, WILDMAN M A, AHN H J, PRASAD P, NICHOLAS J B, HAW J F. Methylbenzene chemistry on zeolite HBeta: Multiple insights into methanol-to-olefin catalysis[J]. J Phys Chem B,2002,106(9):2294−2303. doi: 10.1021/jp013392k
    [42] XU S, ZHENG A, WEI Y, CHEN J, LI J, CHU Y, ZHANG M, WANG Q, ZHOU Y, WANG J. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites[J]. Angew Chem Int Ed,2013,52(44):11564−11568. doi: 10.1002/anie.201303586
    [43] LEE J, HONG U G, HWANG S, YOUN M H, SONG I K. Catalytic cracking of C5 raffinate to light olefins over lanthanum-containing phosphorous-modified porous ZSM-5: Effect of lanthanum content[J]. Fuel Process Technol,2013,109:189−195. doi: 10.1016/j.fuproc.2012.10.017
    [44] MÜLLER S, Understanding elementary steps in methanol-to-olefins chemistry [D]. Miinchen: Technische Universität München, 2016.
    [45] CHU Y, YI X, LI C, SUN X, ZHENG A. Brønsted/Lewis acid sites synergistically promote the initial C−C bond formation in the MTO reaction[J]. Chem Sci,2018,9(31):6470−6479. doi: 10.1039/C8SC02302F
    [46] ZHANG S, ZHANG B, GAO Z, HAN Y. Ca modified ZSM-5 for high propylene selectivity from methanol[J]. React Kinet Mech Catal,2010,99(2):447−453.
    [47] ZHANG S, ZHANG B, GAO Z, HAN Y. Methanol to olefin over Ca-modified HZSM-5 zeolites[J]. Ind Eng Chem Res,2010,49(5):2103−2106. doi: 10.1021/ie901446m
    [48] YARULINA I, BAILLEUL S, PUSTOVARENKO A, MARTINEZ J R, WISPELAERE K D, HAJEK J, WECKHUYSEN B M, HOUBEN K, BALDUS M, VAN SPEYBROECK V. Suppression of the aromatic cycle in methanol-to-olefins reaction over ZSM-5 by post-synthetic modification using calcium[J]. ChemCatChem,2016,8(19):3057−3063. doi: 10.1002/cctc.201600650
    [49] KHEZRI H, IZADBAKHSH A, IZADPANAH A A. Promotion of the performance of La, Ce and Ca impregnated HZSM-5 nanoparticles in the MTO reaction[J]. Fuel Process Technol,2020,199:106253. doi: 10.1016/j.fuproc.2019.106253
    [50] CEJKA J, CORMA A, ZONES S. Zeolites and Catalysis: Synthesis, Reactions and Applications [M]. Hoboken: John Wiley & Sons, 2010.
    [51] CHEN H, WANG Y, MENG F, SUN C, LI H, WANG Z, GAO F, WANG X, WANG S. Aggregates of superfine ZSM-5 crystals: the effect of NaOH on the catalytic performance of methanol to propylene reaction[J]. Microporous Mesoporous Mater,2017,244:301−309. doi: 10.1016/j.micromeso.2017.02.014
    [52] ROSTAMIZADEH M, TAEB A. Highly selective Me-ZSM-5 catalyst for methanol to propylene (MTP)[J]. J Ind Eng Chem,2015,27:297−306. doi: 10.1016/j.jiec.2015.01.004
    [53] SADEGHPOUR P, HAGHIGHI M. High-temperature and short-time hydrothermal fabrication of nanostructured ZSM-5 catalyst with suitable pore geometry and strong intrinsic acidity used in methanol to light olefins conversion[J]. Adv Powder Technol,2018,29(5):1175−1188. doi: 10.1016/j.apt.2018.02.009
    [54] JIA Y, WANG J, ZHANG K, FENG W, LIU S, DING C, LIU P. Nanocrystallite self-assembled hierarchical ZSM-5 zeolite microsphere for methanol to aromatics[J]. Microporous Mesoporous Mater,2017,247:103−115. doi: 10.1016/j.micromeso.2017.03.035
    [55] WEI Y, HE Y, ZHANG D, XU L, MENG S, LIU Z, SU B-L. Study of Mn incorporation into SAPO framework: synthesis, characterization and catalysis in chloromethane conversion to light olefins[J]. Microporous Mesoporous Mater,2006,90(1/3):188−197. doi: 10.1016/j.micromeso.2005.10.042
    [56] ZHANG J, ZHANG H, YANG X, HUANG Z, CAO W. Study on the deactivation and regeneration of the ZSM-5 catalyst used in methanol to olefins[J]. J Nat Gas Chem,2011,20(3):266−270. doi: 10.1016/S1003-9953(10)60183-1
    [57] KHATAMIAN M, OSKOUI M S, DARBANDI M. Synthesis and characterization of aluminium-free ZSM-5 type chromosilicates in different alkaline systems and investigation of their pore structures[J]. Microporous Mesoporous Mater,2013,182:50−61. doi: 10.1016/j.micromeso.2013.07.011
    [58] DUTTA P, ROY S, NANDI L, SAMUEL P, PILLAI SM, BHAT B, RAVINDRANATHAN M. Synthesis of lower olefins from methanol and subsequent conversion of ethylene to higher olefins via oligomerisation[J]. J Mol Catal A: Chem,2004,223(1/2):231−235. doi: 10.1016/j.molcata.2003.11.043
    [59] PINILLA-HERRERO I, BORFECCHIA E, HOLZINGER J, MENTZEL UV, JOENSEN F, LOMACHENKO KA, BORDIGA S, LAMBERTI C, BERLIER G, OLSBYE U. High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics[J]. J Catal,2018,362:146−163. doi: 10.1016/j.jcat.2018.03.032
    [60] GIL B, MOKRZYCKI Ł, SULIKOWSKI B, OLEJNICZAK Z, WALAS S. Desilication of ZSM-5 and ZSM-12 zeolites: Impact on textural, acidic and catalytic properties[J]. Catal Today,2010,152(1/4):24−32. doi: 10.1016/j.cattod.2010.01.059
    [61] BJØRGEN M, JOENSEN F, HOLM MS, OLSBYE U, LILLERUD K-P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH[J]. Appl Catal A: Gen,2008,345(1):43−50. doi: 10.1016/j.apcata.2008.04.020
    [62] CAMPBELL S M, JIANG X Z, HOWE R F. Methanol to hydrocarbons: spectroscopic studies and the significance of extra-framework aluminium[J]. Microporous Mesoporous Mater,1999,29(1/2):91−108. doi: 10.1016/S1387-1811(98)00323-0
    [63] CONNERTON J, JOYNER R W, PADLEY M B. Characterization of the acidity of well-defined Cu-ZSM-5 catalysts using pyridine as a probe molecule[J]. J Chem Soc, Faraday Trans,1995,91(12):1841−1844. doi: 10.1039/ft9959101841
    [64] ZHANG M, XU S, WEI Y, LI J, WANG J, ZHANG W, GAO S, LIU Z. Changing the balance of the MTO reaction dual-cycle mechanism: Reactions over ZSM-5 with varying contact times[J]. Chin J Catal,2016,37(8):1413−1422. doi: 10.1016/S1872-2067(16)62466-X
    [65] BENITO P L, GAYUBO A G, AGUAYO A T, OLAZAR M, BILBAO J. Deposition and characteristics of coke over a H-ZSM5 zeolite-based catalyst in the MTG process[J]. Ind Eng Chem Res,1996,35(11):3991−3998. doi: 10.1021/ie950462z
    [66] IBÁÑEZ M, GAMERO M, RUIZ-MARTÍNEZ J, WECKHUYSEN B, AGUAYO A, BILBAO J, CASTAÑO P. Simultaneous coking and dealumination of zeolite H-ZSM-5 during the transformation of chloromethane into olefins[J]. Catal Sci Technol,2016,6(1):296−306. doi: 10.1039/C5CY00784D
    [67] ARSENOVA N, BLUDAU H, HAAG W, KARGE H. In situ IR spectroscopic study of the adsorption behaviour of ethylbenzene and diethylbenzenes related to ethylbenzene disproportionation over HY zeolite[J]. Microporous Mesoporous Mater,1998,23(1/2):1−10. doi: 10.1016/S1387-1811(98)00040-7
    [68] MÜLLER S, LIU Y, VISHNUVARTHAN M, SUN X, VAN VEEN A C, HALLER G L, SANCHEZ-SANCHEZ M, LERCHER J A. Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins[J]. J Catal,2015,325:48−59. doi: 10.1016/j.jcat.2015.02.013
    [69] WANG S, CHEN Y, QIN Z, ZHAO T-S, FAN S, DONG M, LI J, FAN W, WANG J. Origin and evolution of the initial hydrocarbon pool intermediates in the transition period for the conversion of methanol to olefins over H-ZSM-5 zeolite[J]. J Catal,2019,369:382−395. doi: 10.1016/j.jcat.2018.11.018
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  48
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回