留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钴催化α-己烯氢甲酰化反应区域选择性研究

何晓飞 郭靖 夏洪强 赵天生

何晓飞, 郭靖, 夏洪强, 赵天生. 钴催化α-己烯氢甲酰化反应区域选择性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60131-7
引用本文: 何晓飞, 郭靖, 夏洪强, 赵天生. 钴催化α-己烯氢甲酰化反应区域选择性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60131-7
HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60131-7
Citation: HE Xiao-fei, GUO Jing, XIA Hong-qiang, ZHAO Tian-sheng. Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60131-7

钴催化α-己烯氢甲酰化反应区域选择性研究

doi: 10.1016/S1872-5813(21)60131-7
基金项目: 宁夏重点研发计划东西部合作项目(2017BY063)资助
详细信息
    通讯作者:

    赵天生, 男, 教授, 研究方向:应用催化. E-mail:zhaots@nxu.edu.cn. 银川市贺兰山西路489号. 电话:0951-2062237. 邮编:750021

  • 中图分类号: O643.3

Study on regioselectivity in cobalt catalyzed hydroformylation of α-hexene

Funds: Supported by The East-West Cooperation Project, Key R & D Plan of Ningxia (2017BY063)
  • 摘要: 采用密度泛函理论方法,研究了膦配体(L)配位催化活性中间体HCo(CO)2L的电子效应和位阻效应,对α-己烯氢甲酰化反应区域选择的影响。膦配体具有强吸电子能力,可提高HCo(CO)2L的稳定性;同时PPh3配体具有大的空间位阻,抑制了α-己烯吸附配位至HCo(CO)2L、以及C=C双键与Co–H键以支链反应路径加成。形成支链烷基Co中间体过渡态反应能垒(B-TS1)与形成直链烷基Co中间体过渡态(L-TS1)的反应能垒差(ΔΔE)为2.73 kcal/mol,表明前者发生相对困难,有利于按直链路经反应。膦配体的电子效应和位阻效应共同决定α-己烯C=C双键与Co–H键加成反应方式,且有利于直链反应路径加成,产物以直链醛为主。
  • 图  1  HCo(CO)4催化烯烃氢甲酰化反应机理

    Figure  1  Mechanism for HCo(CO)4 catalyzed hydroformylation

    图  2  Co2(CO)8构型

    Figure  2  Configuration of Co2(CO)8

    图  3  α-己烯嵌入Co-H键形成烷基活化中间体

    Figure  3  Intercalation of α-hexene into Co-H to alkyl intermediates

    图  4  过渡态L-TS1(左)与B-TS1(右)几何构型

    Figure  4  Geometry of transition states L-TS1 (left) and B-TS1 (right)

    图  5  不同配体配位活性中间体立体图

    Figure  5  Graphic models for active intermediates with different ligands

    图  6  氢甲酰化形成支链醛产物路径

    Figure  6  Pathway for branched aldehyde in hydroformylation

    图  7  HCo(CO)2PPh3催化α-己烯氢甲酰化反应势能

    Figure  7  Potential energy for hydroformylation of α-hexene on HCo(CO)2PPh3

    表  1  膦配体不同垂直配位构型及相对自由能

    Table  1  Coordination configurations and free energies of phosphine ligands

    EntryINT1INT1aΔG*(kcal·mol−1)
    10.74
    20.87
    30.83
    40.90
    50.49
    60.50
    G = G(INT1a)-G(INT1)
    下载: 导出CSV

    表  2  α-己烯配位反应的自由能

    Table  2  Free energy of coordination of α-hexene

    EntryLΔGr(kcal·mol−1)
    1CO−3.82
    2PH3−5.10
    3PF3−9.90
    4PMe3−3.30
    5PPh3−3.26
    6PBu3−2.77
    下载: 导出CSV

    表  3  HCo(CO)2L构象转化相对焓和自由能

    Table  3  Enthalpy and free energy of conformational transformation of HCO(CO)2L

    Entryequatorial
    (e)
    axial
    (a)
    ΔH*
    (kcal·mol−1)
    ΔG*
    (kcal·mol−1)
    100
    21.970.41
    31.701.05
    42.721.76
    51.461.14
    61.781.47
    ΔG = G(a)-G(e);ΔH = H(a)-H(e)
    下载: 导出CSV

    表  4  直链过渡态L-TS1和支链过渡态B-TS1结构参数

    Table  4  Structural parameters of L-TS1 and B-TS1

    ParametersL-TS1(B-TS1)
    COPH3PF3PMe3PBu3PPh3
    R(Cα–Cβ)1.405(1.400)1.401(1.402)1.403(1.402)1.407(1.406)1.402(1.406)1.399(1.400)
    R(Co–Cβ)2.291(2.162)2.193(2.137)2.214(2.135)2.187(2.117)2.199(2.219)2.214(2.155)
    R(Co–Cα)2.163(2.187)2.106(2.154)2.108(2.182)2.095(2.159)2.110(2.243)2.117(2.164)
    R(Co–H)1.544(1.516)1.516(1.515)1.514(1.518)1.524(1.524)1.512(1.555)1.513(1.512)
    R(Co–P)2.234(2.554)2.098(2.088)2.220(2.222)2.213(2.223)2.210(2.243)
    R(Co–(CO)ax)1.770(1.774)1.765(1.765)1.768(1.765)1.751(1.749)1.748(1.749)1.754(1.754)
    ∠(Cα–Co–Cβ)36.6(37.6)38.0(38.1)37.8(37.9)38.3(38.4)37.9(36.7)37.6(37.8)
    ν*662i(633i)502i(557i)553i(595i)620i(657i)545i(716i)469i(572i)
    键长:Å;健角:°;ν*:Hessian矩阵负本征值,cm−1
    下载: 导出CSV

    表  5  α-己烯嵌入Co−H键过程自由能

    Table  5  Free energy of α-hexene intercalation into Co−H

    EntryLΔG(kcal·mol−1)
    L-TS1B-TS1ΔΔE*L-INT2B-INT2L-INT3B-INT3
    1CO6.546.680.14−7.14−7.19
    2PH36.086.590.51−7.15−7.07−7.93−8.97
    3PF35.715.07−0.64−12.23−13.25−9.92−11.25
    4PMe38.179.371.20−3.21−10.74−4.68−8.04
    5PPh35.758.482.73−4.71−4.62−10.20−9.85
    6PBu37.439.922.49−4.20−1.27−8.43−2.95
    *ΔΔE = ΔG (B-TS1)−ΔG(L-TS1)
    下载: 导出CSV
  • [1] FRANKE R, SELENT D, BÖRNER A. Applied hydroformylation[J]. Chem Rev,2012,112(11):5675−5732. doi: 10.1021/cr3001803
    [2] ROELEN O. Production of oxygenated carbon compounds. US, 2327066[P]. 1943.
    [3] HEBRARD F, KALCK P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle[J]. Chem Rev,2009,109(9):4272−4282. doi: 10.1021/cr8002533
    [4] SZLAPA E N, HARVEY J N. Computational modelling of selectivity in cobalt-catalyzed propene hydroformylation[J]. Chem Eur J,2018,24(64):17096−17104. doi: 10.1002/chem.201803490
    [5] LIU Y, LI Z H, WANG B, ZHANG Y. A fine dispersed cobalt catalyst with macro-pore for hydroformylation of 1-hexene[J]. Catal Lett,2016,11(146):2252−2260.
    [6] HOOD D M, JOHNSON R A, CARPENTER A E, YOUNKER J M, VINYARD D J, STANLEY G G. Highly active cationic cobalt(II) hydroformylation catalysts[J]. Science,2020,367(6477):542−548. doi: 10.1126/science.aaw7742
    [7] HECK R F, BRESLOE D S. The reaction of cobalt hydrotetracarbonyl with olefins[J]. J Am Chem Soc,1961,83:4023−4027. doi: 10.1021/ja01480a017
    [8] LI P, SHEN C R, MIN J, MEI J Y, ZHENG H, HE L TIAN X X. Computational investigation of the ligand effect on the chemo/regioselectivity and reactivity of cobalt-catalysed hydroformylation[J]. Catal Sci Technol,2020,10(9):2994−3007. doi: 10.1039/C9CY02562F
    [9] VARELA J A, VáZQUEZ S A, MARTíNEZ-NúñEZ E. An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis. Chem Sci, 2017, 8(5): 3843−3851.
    [10] RUSH L E, PRINGLE P G, HARVEY J N. Computational kinetics of cobalt-catalyzed alkene hydroformylation[J]. Angew Chem Int Ed,2014,53(33):8672−8676. doi: 10.1002/anie.201402115
    [11] FENG J H, GARLAND M. Unmodified homogeneous rhodium-catalyzed hydroformylation of styrene. The detailed kinetics of the regioselective synthesis[J]. Organometallics,1999,18(3):417−427. doi: 10.1021/om980514v
    [12] 雷鸣, 冯文林, 徐振峰. 羰基钴催化氢甲酰化反应的理论研究[J]. 物理化学学报,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609

    LEI Ming, FENG Wen-lin, XU Zhen-feng. Theoretical study on the mechanisms of some elementary reactions catalyzed by modified carbonyl cobalt[J]. Acta Phys-Chim Sin,2000,16(6):522−526. doi: 10.3866/PKU.WHXB20000609
    [13] HUO C F, LI Y W, BELLER M, JIAO H J. HCo(CO)3-catalyzed propene hydroformylation. Insight into detailed mechanism[J]. Organometallics,2003,22(23):4665−4677. doi: 10.1021/om0304863
    [14] BERNALES V, FROESE R D. Rhodium catalyzed hydroformylation of olefins[J]. J Comput Chem,2019,40(2):342−348. doi: 10.1002/jcc.25605
    [15] LEI M, FENG W L, XU Z F. Ab initio MO study of reactions mechanism for carbonyl migration of Co complex[J]. Chinese Sci Bull,2000,45(13):1176−1178. doi: 10.1007/BF02886073
    [16] KUMAR M, CHAUDHARI R V, SUBRAMANIAM B, JACKSON T A. Ligand effects on the regioselectivity of rhodium-catalyzed hydroformylation: Density functional calculations illuminate the role of long-range noncovalent interactions[J]. Organometallics,2014,33(16):4183−4191. doi: 10.1021/om500196g
    [17] PATEL P, WILSON A K. Computational chemistry considerations in catalysis: Regioselectivity and metal-ligand dissociation[J]. Catal Today,2020,358:422−429. doi: 10.1016/j.cattod.2020.07.057
    [18] DIAS R P, PRATES M S L, DE ALMEIDA W B, ROCHA W R. DFT study of the ligand effects on the regioselectivity of the insertion reaction of olefins in the complexes [HRh(CO)2(PR3)(L)] (R = H, F, Et, Ph, OEt, OPh, and L = propene, styrene)[J]. Int J Quantum Chem,2011,111(7-8):1280−1292. doi: 10.1002/qua.22590
    [19] BECKE A D. Density‐functional thermochemistry. III. The role of exact exchange[J]. J Chern Phys,1993,98(7):5648−5652. doi: 10.1063/1.464913
    [20] GRIMME S, EHRLICH S, GOERIGK L. Effect of the damping function in dispersion corrected density functional theory[J]. J Comput Chem,2011,32(7):1456−1465. doi: 10.1002/jcc.21759
    [21] FRISCH M J, TRUCKS G W, SCHLEGEL H B, SCUSERIA G E. Gaussian16 Rev. B. 01[M] Wallingford, CT, 2016.
    [22] AULLóN G, ALVAREZ S. The [M2(CO)8] complexes of the cobalt group. Eur J Inorg Chem, 2001, 12: 3031−3038.
    [23] GUO J D, PHAM H D, WU Y B, ZHANG D J, WANG X T. Mechanism of cobalt-catalyzed direct aminocarbonylation of unactivated alkyl electrophiles: Outer-sphere amine substitution to form amide bond[J]. ACS Catal,2020,10(2):1520−1527. doi: 10.1021/acscatal.9b04736
    [24] 姜淼, 杜虹, 王国庆, 严丽, 丁云杰. Co-PPh3@POPs多相催化剂氢甲酰化反应研究[J]. 煤炭学报,2020,45(4):1250−1258.

    JIANG Miao, DU Hong, WANG Guo-qing, YAN Li, DING Yun-jie. Co-PPh3@POPs heterogeneous catalysts for hydroformylation of olefins[J]. J China Coal Soci,2020,45(4):1250−1258.
    [25] GRIMA J P, CHOPLIN F, KAUFMANN G. Theoretical study of the hydroformyltaion reaction mechanism[J]. J Organomet Chem,1977,129:221−237. doi: 10.1016/S0022-328X(00)92495-1
    [26] BIRBECK J M, HAYNES A, ADAMS H, DAMOERNSE L, OTTO S. Ligand effects on reactivity of cobalt acyl complexes[J]. ACS Catal,2012,2(12):2512−2523. doi: 10.1021/cs300589n
    [27] HUO C F, ZENG T, LI Y W, BELLER M, JIAO H J. Switching end-on into side-on C≡N coordination: A computational approach[J]. Organometallics,2005,24(24):6037−6042. doi: 10.1021/om0505054
    [28] FALIVENE L, CREDENDINO R, POATER A, PETTA A, SERRA L, OLIVA R, SCARANO V, CAVALLO L. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps[J]. Organometallics,2016,35(13):2286−2293. doi: 10.1021/acs.organomet.6b00371
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  17
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-06-20
  • 网络出版日期:  2021-07-19

目录

    /

    返回文章
    返回