留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维素热解转化的研究进展

李承宇 张军 袁浩然 王树荣 陈勇

李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60134-2
引用本文: 李承宇, 张军, 袁浩然, 王树荣, 陈勇. 纤维素热解转化的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60134-2
LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60134-2
Citation: LI Cheng-yu, ZHANG Jun, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Advance on the pyrolytic transformation of cellulose[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60134-2

纤维素热解转化的研究进展

doi: 10.1016/S1872-5813(21)60134-2
基金项目: 国家自然科学基金面上项目(51976222)和能源清洁利用国家重点实验室开放基金(ZJU-CEU2020023)资助
详细信息
    通讯作者:

    yuanhr@ms.giec.ac.cn,李承宇和张军为本文共同第一作者

  • 中图分类号: TQ352

Advance on the pyrolytic transformation of cellulose

Funds: The project was supported by the National Natural Science Foundation of China (51976222) and State Key Laboratory of Clean Energy Utilization (Open Fund Project ZJU-CEU2020023)
  • 摘要: 纤维素的热解技术是一种非常有应用前景的高值转化技术。本综述系统地介绍了纤维素的基础特性,深入讨论了纤维素热解机制、研究方法、催化剂类型及其他影响纤维素热解产物分布的因素。其中,不同类型催化剂的添加和反应装置结构的设计优化可以显著提高纤维素热解转化效率,改善产物种类分布和提高特定高值化学品的选择性,从而有效地提高纤维素热解产物的资源、能源化利用价值。最后,对纤维素热解未来技术研究的发展方向进行了展望。
  • 图  1  纤维素热解制备各种高值化学品

    Figure  1  Various high-value chemicals from cellulose pyrolysis

    图  2  纤维素的晶体结构(虚线代表氢键)

    Figure  2  Crystal structure of cellulose (dotted lines represent hydrogen bonds)

    图  3  纤维素Ⅰ、Ⅱ和Ⅲ的结构模型[30]

    Figure  3  Molecular models of cellulose allomorphs[30]

    图  4  生物质转化的主要机制途径(温度从左到右逐渐升高)

    Figure  4  Main mechanism of biomass conversion

    图  5  较低温度(150−300 ℃)区间纤维素的结构变化

    Figure  5  Structural changes of cellulose at lower pyrolysis temperatures (150−300 ℃)

    图  6  纤维素热解形成主要挥发性产物左旋葡聚糖和糠醛的机理

    Figure  6  Mechanism of cellulose pyrolysis for producing the main volatile products (LG and FF)

    图  7  苯环取代基团转化生成CH4、CO、H2和焦炭

    Figure  7  Conversion of substituent group from benzene ring into CH4, CO, H2 and char

    图  8  纤维素颗粒热解过程剖面示意图

    Figure  8  Schematic cross-section for the pyrolysis of cellulose granules

    图  9  纤维素催化热解反应路径示意图

    Figure  9  Reaction pathways for the catalytic pyrolysis of cellulose

    图  10  HZSM-5催化纤维素热解反应途径示意图

    Figure  10  Reaction pathway for cellulose pyrolysis over HZSM-5

    表  1  四种不同动力学方法计算出的纤维素热解表观活化能[76]

    Table  1  Ea of cellulose pyrolysis calculated by different kinetic methods[76]

    αEkissinger/(kJ·mol−1)EFWO/(kJ·mol−1)EKAS/(kJ·mol−1)Estarink/(kJ·mol−1)
    0.1165180.81180.82181.09
    0.2165172.22171.43171.72
    0.3165161.95160.54160.80
    0.4165159.95158.79158.61
    0.5165158.06156.13156.41
    0.6165155.35153.31153.63
    0.7165159.88157.96158.34
    Average165164.03162.71162.94
    下载: 导出CSV

    表  2  不同类型的无机盐离子催化剂对纤维素热解产物分布的影响[87, 96]

    Table  2  Effect on the distribution of cellulose pyrolysis products with different types of inorganic salt ion catalysts[87, 96]

    CatalystTemperature t/℃Yield w/%
    chargastarcompounds
    Blank5005.357.0779.6LG 59%
    1.0%NaCl5009.7723.4561.55LG 16%
    1.0%KCl50018.3728.7251.97LG 12%
    1.0%MgCl250013.6633.6563.59LG 21%
    1.0%CaCl250012.6740.1249.15LG 18%
    1.0%Ca(OH)2500LG 30%
    1.0%Ca(NO3)2500LG 23%
    1.0%CaCO3500LG 41%
    1.0%CaHPO4500LG 38%
    Blank60013.245.741.1
    0.26 mmol/g Fe(NO3)360016.951.631.5
    0.26 mmol/g Ni(NO3)260015.250.734.1
    8.3 mg/g Fe2(SO4)3500LG 3.2%, LGO 40.7%
    95.6 mg/g Fe2(SO4)3500LG 44.8%, LGO 1.7%
    下载: 导出CSV

    表  3  不同类型的金属氧化物对纤维素热解产物分布的影响[1, 105]

    Table  3  Effects of various metal oxide catalysts on the product distribution for cellulose pyrolysis[1, 105]

    CatalystTemperature t/℃Yield w/%
    chargastarcompounds
    SiO250022.8918.3558.76aromatics 0.1%, CO 6.5%,
    heavy oil 11.7%
    SiO2-Al2O350029.6225.0345.39aromatics 0.7%, CO 10.5%,
    heavy oil 8.0%
    Al2O350033.8528.2337.39aromatics 10.8%, CO 11.1%,
    heavy oil 0.0%
    MgO50027.5028.3044.23aromatics 0.6%, CO 9.6%,
    heavy oil 13.5%
    NiO50024.8427.7347.46aromatics 0.1%, CO 8.9%,
    heavy oil 9.8%
    TiO250024.7118.1057.19aromatics 0.0%, CO 7.0%,
    heavy oil 11.3%
    ZrO250023.5220.3256.11aromatics 0.9%, CO 7.5%,
    Heavy oil 13.1%
    TiO2-ZrO250028.1729.6142.22aromatics 7.3%, CO 10.1%,
    heavy oil 18.3%
    500LG 10.5%, LGO 3.7%
    Nano Al2O3500LG 9.1%, LGO 7.7%
    Nano MgO500LG 11.0%, LGO 2.2%
    Nano SiO2500LG 2.8%, LGO 0.2%
    Nano TiSiO4500LG 7.0%, LGO 11.0%
    Nano TiO2-Al2O3500LG 2.3%, LGO 19.0%
    TiO2-Al2O3500LG 10.5%, LGO 3.13%
    下载: 导出CSV

    表  4  不同类型的沸石分子筛催化剂对纤维素热解产物分布的影响[121, 122, 125]

    Table  4  Effect on the distribution of cellulose pyrolysis products with different types of zeolite catalysts[121, 122, 125]

    CatalystTemperature t/℃Yield w/%
    chargastarCompounds
    Blank450241957furans 9.2%, hydrocarbons 12%, acids 4.5%,
    aromatics 1.94%,
    aldehydes 5.43%, ketones 2.48%
    H-ZSM-5450232057furans 2.2%, hydrocarbons 29%, acids 0.5%
    Mg-ZSM-5450202159furans 2.4%, hydrocarbons 29%, acids 0.8%
    Ni-ZSM-5450251857furans 2.5%, hydrocarbons 35%, acids 0.4%
    Cu-ZSM-5450271756furans 2.6%, hydrocarbons 31%, acids 0.4%
    Ga-ZSM-5450221959furans 2.4%, hydrocarbons 34%, acids 0.6%
    Sn-ZSM-5450242056furans 2.7%, hydrocarbons 33%, acids 0.4%
    Hierarchical H-ZSM-5450222157aromatics 8.97%, aldehydes 0.22%,
    ketones 2.48%
    HierarchicalMg-ZSM-5450211960aromatics 6.92%, aldehydes 0.27%,
    ketones 3.02%
    HierarchicalNi-ZSM-5450212059aromatics 7.65%, aldehydes 0.26%,
    ketones 2.63%
    HierarchicalCu-ZSM-5450182260aromatics 7.00%, aldehydes 0.39%,
    ketones 2.73%
    HierarchicalSn-ZSM-5450242056aromatics 7.98%, aldehydes 0.29%,
    ketones 2.36%
    Blank550202852monocyclic aromatics 1.46%,
    polycyclic aromatics 1.22%
    H-ZSM-5550243145monocyclic aromatics 13.84%,
    polycyclic aromatics 15.10%
    Fe-ZSM-5550253441monocyclic aromatics 17.25%,
    polycyclic aromatics 22.36%
    Zr-ZSM-5550243343monocyclic aromatics 23.96%,
    polycyclic aromatics 17.84%
    Co-ZSM-5550263638monocyclic aromatics 10.62%,
    polycyclic aromatics 11.67%
    下载: 导出CSV
  • [1] STEFANIDIS S D, KALOGIANNIS K G, ILIOPOULOU E F, et al. In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor[J]. Bioresour Technol,2011,102(17):8261−8267. doi: 10.1016/j.biortech.2011.06.032
    [2] SHELDON R A. Green and sustainable manufacture of chemicals from biomass: state of the art[J]. Green Chem,2014,16(3):95−963.
    [3] WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review[J]. Prog Energ Combust,2017,62:33−86. doi: 10.1016/j.pecs.2017.05.004
    [4] GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources: A review[J]. Renew Sust Energ Rev,2008,12(2):504−517. doi: 10.1016/j.rser.2006.07.014
    [5] LIMAYEM A, RICKE S C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects[J]. Prog Energ Combust,2012,38(4):449−467. doi: 10.1016/j.pecs.2012.03.002
    [6] KWIETNIEWSKA E, TYS J. Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation[J]. Renew Sust Energ Rev,2014,34:491−500. doi: 10.1016/j.rser.2014.03.041
    [7] BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. J Anal Appl Pyrol,1999,51(1):3−22.
    [8] NOMURA T, MIZUNO H, MINAMI E, et al. Fast Pyrolysis of Cellulose by Infrared Heating[J]. Energies (Basel),2021,14(7):1842. doi: 10.3390/en14071842
    [9] LU Q, YANG X, DONG C, et al. Influence of pyrolysis temperature and time on the cellulose fast pyrolysis products: Analytical Py-GC/MS study[J]. J Anal Appl Pyrol,2011,92(2):430−438. doi: 10.1016/j.jaap.2011.08.006
    [10] WANG Y, FAN M, ZHU L, et al. Enhancement of bio-based para-xylene selectivity in catalytic fast pyrolysis of cellulose using a surface-modified Mg/P/HZSM-5 catalyst[J]. Chem Res Chinese U,2019,35(3):449−456. doi: 10.1007/s40242-019-9024-6
    [11] ŞERBĂNESCU C. Kinetic analysis of cellulose pyrolysis: a short review[J]. Chem Pap,2014,68(7).
    [12] MALIEKKAL V, DAUENHAUER P J, NEUROCK M. Glycosidic C–O bond activation in cellulose pyrolysis: alpha versus beta and condensed phase hydroxyl-catalytic scission[J]. ACS Catal,2020,10(15):8454−8464. doi: 10.1021/acscatal.0c02133
    [13] HUBER G W, IBORRA S, CORMA A. Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering[J]. Chem Rev,2006,106(9):4044−4098. doi: 10.1021/cr068360d
    [14] ZHANG H, XIAO R, WANG D, et al. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres[J]. Bioresource Technol,2011,102(5):4258−4264. doi: 10.1016/j.biortech.2010.12.075
    [15] ZHENG J, WEI Q. Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation[J]. Biomass Bioenerg,2011,35(5):1804−1810. doi: 10.1016/j.biombioe.2011.01.006
    [16] MERCADER F D M, GROENEVELD M J, KERSTEN S R A, et al. Pyrolysis oil upgrading by high pressure thermal treatment[J]. Fuel,2010,89(10):2829−2837. doi: 10.1016/j.fuel.2010.01.026
    [17] OASMAA A, KUOPPALA E, SELIN J, et al. Fast Pyrolysis of Forestry Residue and Pine. 4. Improvement of the product quality by solvent addition[J]. Energ Fuel,2004,18(5):1578−1583. doi: 10.1021/ef040038n
    [18] KAWAMOTO H. Review of reactions and molecular mechanisms in cellulose pyrolysis[J]. Curr Org Chem,2016,20(23):2444−2457.
    [19] ZHU Y, CHEN J, LI W, et al. A new method for long-chain alkanes under a condition without extra hydrogen source: Catalytic upgrading of cellulose pyrolysis vapors over Au/TS-1 catalyst[J]. J Anal Appl Pyrol,2020,151:104906. doi: 10.1016/j.jaap.2020.104906
    [20] HABIBI Y, LUCIA L A, ROJAS O J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications[J]. Chem Rev,2010,110(6):3479−3500. doi: 10.1021/cr900339w
    [21] ROWELL R M. Handbook of wood chemistry and wood composites[M]. CRC Press, 2012.
    [22] POLETTO M, ORNAGHI H L, ZATTERA A J. Native cellulose: Structure, characterization and thermal properties[J]. Materials (Basel),2014,7(9):6105−6119. doi: 10.3390/ma7096105
    [23] CHEN X, YU J, ZHANG Z, et al. Study on structure and thermal stability properties of cellulose fibers from rice straw[J]. Carbohyd Polym,2011,85(1):245−250. doi: 10.1016/j.carbpol.2011.02.022
    [24] MAZEAU K, HEUX L. Molecular dynamics simulations of bulk native crystalline and amorphous structures of cellulose[J]. J Phys Chem B,2003,107(10):2394−2403. doi: 10.1021/jp0219395
    [25] KIM U, EOM S H, WADA M. Thermal decomposition of native cellulose: Influence on crystallite size[J]. Polym Degrad Stabil,2010,95(5):778−781. doi: 10.1016/j.polymdegradstab.2010.02.009
    [26] PARK S, BAKER J O, HIMMEL M E, et al. Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance[J]. Biotechnol Biofuels,2010,3:10. doi: 10.1186/1754-6834-3-10
    [27] VANDERHART D L, ATALLA R H. Studies of microstructure in native celluloses using solid-state carbon-13 NMR[J]. Macromolecules,1984,17(8):1465−1472. doi: 10.1021/ma00138a009
    [28] 吴祺祺. 纤维素Ⅲ型纳米晶体的制备、表征及其结晶结构稳定性研究[D]. 华南理工大学, 2020.
    [29] 裴继诚. 植物纤维化学[M]. 第4版. 北京: 中国轻工业出版社, 2014: 12–20.
    [30] MUKARAKATE C, MITTAL A, CIESIELSKI P N, et al. Influence of crystal allomorph and crystallinity on the products and behavior of cellulose during fast pyrolysis[J]. ACS Sustain Chem Eng,2016,4(9):4662−4674. doi: 10.1021/acssuschemeng.6b00812
    [31] ZHANG J, LUO J, TONG D, et al. The dependence of pyrolysis behavior on the crystal state of cellulose[J]. Carbohyd Polym,2010,79(1):164−169. doi: 10.1016/j.carbpol.2009.07.038
    [32] LENG E, FERREIRO A I, LIU T, et al. Experimental and kinetic modelling investigation on the effects of crystallinity on cellulose pyrolysis[J]. J Anal Appl Pyrol,2020,152:104863. doi: 10.1016/j.jaap.2020.104863
    [33] VAN DE VELDEN M, BAEYENS J, BREMS A, et al. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction[J]. Renew Energ,2010,35(1):232−242. doi: 10.1016/j.renene.2009.04.019
    [34] COLLARD F, BLIN J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin[J]. Renew Sust Energ Rev,2014,38:594−608. doi: 10.1016/j.rser.2014.06.013
    [35] WOOTEN J B, SEEMAN J I, HAJALIGOL M R. Observation and characterization of cellulose pyrolysis intermediates by 13C CPMAS NMR. A new mechanistic model[J]. Energ Fuel,2004,18(1):1−15. doi: 10.1021/ef0300601
    [36] MAMLEEV V, BOURBIGOT S, LE BRAS M, et al. The facts and hypotheses relating to the phenomenological model of cellulose pyrolysis: Interdependence of the steps[J]. J Anal Appl Pyrol,2009,84(1):1−17. doi: 10.1016/j.jaap.2008.10.014
    [37] COLLARD F, BLIN J, BENSAKHRIA A, et al. Influence of impregnated metal on the pyrolysis conversion of biomass constituents[J]. J Anal Appl Pyrol,2012,95:213−226. doi: 10.1016/j.jaap.2012.02.009
    [38] MCGRATH T E, CHAN W G, HAJALIGOL M R. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose[J]. J Anal Appl Pyrol,2003,66(1-2):51−70. doi: 10.1016/S0165-2370(02)00105-5
    [39] LÓPEZ M B, BLANCO C G, MARTı́NEZ-ALONSO A, et al. Composition of gases released during olive stones pyrolysis[J]. J Anal Appl Pyrol,2002,65(2):313−322. doi: 10.1016/S0165-2370(02)00008-6
    [40] MORF P, HASLER P, NUSSBAUMER T. Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips[J]. Fuel,2002,81(7):843−853. doi: 10.1016/S0016-2361(01)00216-2
    [41] ANCA-COUCE A. Reaction mechanisms and multi-scale modelling of lignocellulosic biomass pyrolysis[J]. Prog Energ Combust,2016,53:41−79. doi: 10.1016/j.pecs.2015.10.002
    [42] KILZER F J, BROIDO A. Speculations on the nature of cellulose pyrolysis[J]. Pyrodynamics,1965,2:151−163.
    [43] SHAFIZADEH F, BRADBURY A. Thermal degradation of cellulose in air and nitrogen at low temperatures[J]. J Appl Polym Sci,1979,23(5):1431−1442. doi: 10.1002/app.1979.070230513
    [44] PISKORZ J, RADLEIN D S A, SCOTT D S, et al. Pretreatment of wood and cellulose for production of sugars by fast pyrolysis[J]. J Anal Appl Pyrol,1989,16(2):127−142. doi: 10.1016/0165-2370(89)85012-0
    [45] BANYASZ J L, LI S, LYONS-HART J, et al. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel,2001,80(12):1757−1763. doi: 10.1016/S0016-2361(01)00060-6
    [46] BANYASZ J L, Li S, LYONS-HART J L, et al. Cellulose pyrolysis: the kinetics of hydroxyacetaldehyde evolution[J]. J Anal Appl Pyrol,2001,57(2):223−248. doi: 10.1016/S0165-2370(00)00135-2
    [47] SCHEIRS J, CAMINO G, TUMIATTI W. Overview of water evolution during the thermal degradation of cellulose[J]. Eur Polym J,2001,37(5):933−942. doi: 10.1016/S0014-3057(00)00211-1
    [48] WORASUWANNARAK N, SONOBE T, TANTHAPANICHAKOON W. Pyrolysis behaviors of rice straw, rice husk, and corncob by TG-MS technique[J]. J Anal Appl Pyrol,2007,78(2):265−271. doi: 10.1016/j.jaap.2006.08.002
    [49] PATWARDHAN P R, DALLUGE D L, SHANKS B H, et al. Distinguishing primary and secondary reactions of cellulose pyrolysis[J]. Bioresource Technol,2011,102(8):5265−5269. doi: 10.1016/j.biortech.2011.02.018
    [50] SHEN D K, GU S. The mechanism for thermal decomposition of cellulose and its main products[J]. Bioresource Technol,2009,100(24):6496−6504. doi: 10.1016/j.biortech.2009.06.095
    [51] YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12-13):1781−1788. doi: 10.1016/j.fuel.2006.12.013
    [52] PASTOROVA I, BOTTO R E, ARISZ P W, et al. Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study[J]. Carbohyd Res,1994,262(1):27−47. doi: 10.1016/0008-6215(94)84003-2
    [53] ZHANG C, CHAO L, ZHANG Z, et al. Pyrolysis of cellulose: Evolution of functionalities and structure of bio-char versus temperature[J]. Renew Sust Energ Rev,2021,135:110416. doi: 10.1016/j.rser.2020.110416
    [54] JENSEN A, DAM-JOHANSEN K, WÓJTOWICZ M A, et al. TG-FTIR study of the influence of potassium chloride on wheat straw pyrolysis[J]. Energ Fuel,1998,12(5):929−938. doi: 10.1021/ef980008i
    [55] BAUMLIN S, BROUST F, FERRER M, et al. The continuous self stirred tank reactor: measurement of the cracking kinetics of biomass pyrolysis vapours[J]. Chem Eng Sci,2005,60(1):41−55. doi: 10.1016/j.ces.2004.07.057
    [56] NEVES D, THUNMAN H, MATOS A, et al. Characterization and prediction of biomass pyrolysis products[J]. Prog Energ Combust,2011,37(5):611−630. doi: 10.1016/j.pecs.2011.01.001
    [57] SHEN J, WANG X, GARCIA-PEREZ M, et al. Effects of particle size on the fast pyrolysis of oil mallee woody biomass[J]. Fuel,2009,88(10):1810−1817. doi: 10.1016/j.fuel.2009.05.001
    [58] PAULSEN A D, HOUGH B R, WILLIAMS C L, et al. Fast pyrolysis of wood for biofuels: spatiotemporally resolved diffuse reflectance in situ spectroscopy of particles[J]. ChemSusChem,2014,7(3):765−776. doi: 10.1002/cssc.201301056
    [59] PATWARDHAN P R, DALLUGE D L, SHANKS B H, et al. Distinguishing primary and secondary reactions of cellulose pyrolysis[J]. Bioresource Technol,2011,102(8):5265−5269. doi: 10.1016/j.biortech.2011.02.018
    [60] BIAGINI E, BARONTINI F, TOGNOTTI L. Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique[J]. Ind Eng Chem Res,2006,45(13):4486−4493. doi: 10.1021/ie0514049
    [61] LV G, WU S. Analytical pyrolysis studies of corn stalk and its three main components by TG-MS and Py-GC/MS[J]. J Anal Appl Pyrol,2012,97:11−18. doi: 10.1016/j.jaap.2012.04.010
    [62] SANCHEZ-SILVA L, LÓPEZ-GONZÁLEZ D, VILLASEÑOR J, et al. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis[J]. Bioresource Technol,2012,109:163−172. doi: 10.1016/j.biortech.2012.01.001
    [63] HUANG Y F, KUAN W H, CHIUEH P T, et al. Pyrolysis of biomass by thermal analysis-mass spectrometry (TA-MS)[J]. Bioresource Technol,2011,102(3):3527−3534. doi: 10.1016/j.biortech.2010.11.049
    [64] CHEN T, ZHANG J, WU J. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model[J]. Bioresource Technol,2016,211:502−508. doi: 10.1016/j.biortech.2016.03.091
    [65] SIENGCHUM T, ISENBERG M, CHUANG S S. Fast pyrolysis of coconut biomass-An FTIR study[J]. Fuel,2013,105:559−565. doi: 10.1016/j.fuel.2012.09.039
    [66] ZICKLER G A, WAGERMAIER W, FUNARI S S, et al. In situ X-ray diffraction investigation of thermal decomposition of wood cellulose[J]. Journal of Analytical & Applied Pyrolysis,2007,80(1):134−140.
    [67] DUFOUR A, CASTRO-DÍAZ M, MARCHAL P, et al. In situ analysis of biomass pyrolysis by high temperature rheology in relations with 1H NMR[J]. Energ Fuel,2012,26(10):6432−6441. doi: 10.1021/ef301310x
    [68] NODA I, DOWREY A E, MARCOTT C, et al. Generalized two-dimensional correlation spectroscopy[J]. Appl Spectrosc,2000,54(7):236A−248A. doi: 10.1366/0003702001950454
    [69] LÓPEZ-BECEIRO J, DÍAZ-DÍAZ A M, ÁLVAREZ-GARCÍA A, et al. A logistic approach for kinetics of isothermal pyrolysis of cellulose[J]. Processes,2021,9(3):551. doi: 10.3390/pr9030551
    [70] KOSTETSKYY P, BROADBELT L J. Progress in modeling of biomass fast pyrolysis: A review[J]. Energ Fuel,2020,34(12):15195−15216. doi: 10.1021/acs.energyfuels.0c02295
    [71] KISSINGER H E. Reaction kinetics in differential thermal analysis[J]. Anal Chem,1957,29(11):1702−1706. doi: 10.1021/ac60131a045
    [72] OZAWA T. A new method of analyzing thermogravimetric data[J]. B Chem Soc Jpn,1965,38(11):1881−1886. doi: 10.1246/bcsj.38.1881
    [73] FLYNN J H, WALL L A. A quick, direct method for the determination of activation energy from thermogravimetric data[J]. J Polym Sci Pol Phys,1966,4(5):323−328.
    [74] FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. J Polym Sci Pol Symp,1964,6(1):183−195.
    [75] STARINK M J. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods[J]. Thermochim Acta,2003,404(1):163−176.
    [76] KHAN A S, KHAN A S, MAN Z, et al. Impact of ball-milling pretreatment on pyrolysis behavior and kinetics of crystalline cellulose[J]. Waste Biomass Valori,2016,7(3):571−581. doi: 10.1007/s12649-015-9460-6
    [77] LU Q, YE X, ZHANG Z, et al. Catalytic fast pyrolysis of cellulose and biomass to produce levoglucosenone using magnetic SO42-/TiO2-Fe3O4[J]. Bioresource Technol,2014,171:10−15. doi: 10.1016/j.biortech.2014.08.075
    [78] BOZELL J J, PETERSEN G R. Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's Top 10 revisited[J]. Green Chem,2010,12(4):539−554. doi: 10.1039/b922014c
    [79] DICKERSON T, SORIA J. Catalytic fast pyrolysis: a review[J]. Energies,2013,6(1):514−538. doi: 10.3390/en6010514
    [80] REZAEI P S, SHAFAGHAT H, WAN M A W D. Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review[J]. Appl Catal A-Gen,2014,469:490−511. doi: 10.1016/j.apcata.2013.09.036
    [81] BJØRGEN M, SVELLE S, JOENSEN F, et al. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [82] LI J, WEI Y, LIU G, et al. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology[J]. Catal Today,2011,171(1):221−228. doi: 10.1016/j.cattod.2011.02.027
    [83] STEFANIDIS S D, KARAKOULIA S A, KALOGIANNIS K G, et al. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Appl Catal B-Environ,2016,196:155−173. doi: 10.1016/j.apcatb.2016.05.031
    [84] PACCHIONI G. Ketonization of carboxylic acids in biomass conversion over TiO2 and ZrO2 surfaces: A DFT perspective[J]. ACS Catal,2014,4(9):2874−2888. doi: 10.1021/cs500791w
    [85] NOLTE M W, SHANKS B H. A Perspective on catalytic strategies for deoxygenation in biomass pyrolysis[J]. Energy Technol Ger,2017,5(1):7−18. doi: 10.1002/ente.201600096
    [86] GALADIMA A, MURAZA O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review[J]. Energ Convers Manage,2015,105:338−354. doi: 10.1016/j.enconman.2015.07.078
    [87] PATWARDHAN P R, SATRIO J A, BROWN R C, et al. Influence of inorganic salts on the primary pyrolysis products of cellulose[J]. Bioresource Technol,2010,101(12):4646−4655. doi: 10.1016/j.biortech.2010.01.112
    [88] TRENDEWICZ A, EVANS R, DUTTA A, et al. Evaluating the effect of potassium on cellulose pyrolysis reaction kinetics[J]. Biomass Bioenerg,2015,74:15−25. doi: 10.1016/j.biombioe.2015.01.001
    [89] BANKS S W, NOWAKOWSKI D J, BRIDGWATER A V. Impact of potassium and phosphorus in biomass on the properties of fast pyrolysis bio-oil[J]. Energ Fuel,2016,30(10):8009−8018. doi: 10.1021/acs.energyfuels.6b01044
    [90] SADDAWI A, JONES J M, WILLIAMS A. Influence of alkali metals on the kinetics of the thermal decomposition of biomass[J]. Fuel Process Technol,2012,104:189−197. doi: 10.1016/j.fuproc.2012.05.014
    [91] ZHOU X, MAYES H B, BROADBELT L J, et al. Fast pyrolysis of glucose‐based carbohydrates with added NaCl part 2: Validation and evaluation of the mechanistic model[J]. AIChE J,2016,62(3):778−791. doi: 10.1002/aic.15107
    [92] LIU D, YU Y, LONG Y, et al. Effect of MgCl2 loading on the evolution of reaction intermediates during cellulose fast pyrolysis at 325 °C[J]. P Combust Inst,2015,35(2):2381−2388. doi: 10.1016/j.proci.2014.05.026
    [93] LIU D, YU Y, HAYASHI J, et al. Contribution of dehydration and depolymerization reactions during the fast pyrolysis of various salt-loaded celluloses at low temperatures[J]. Fuel (Guildford),2014,136:62−68. doi: 10.1016/j.fuel.2014.07.025
    [94] CARVALHO W S, CUNHA I F, PEREIRA M S, et al. Thermal decomposition profile and product selectivity of analytical pyrolysis of sweet sorghum bagasse: Effect of addition of inorganic salts[J]. Ind Crop Prod,2015,74:372−380. doi: 10.1016/j.indcrop.2015.05.020
    [95] BRANCA C, DI BLASI C, GALGANO A. Pyrolysis of Corncobs Catalyzed by Zinc Chloride for Furfural Production[J]. Ind Eng Chem Res,2010,49(20):9743−9752. doi: 10.1021/ie101067v
    [96] DOBELE G, ROSSINSKAJA G, DIZHBITE T, et al. Application of catalysts for obtaining 1, 6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. J Anal Appl Pyrol,2005,74(1-2):401−405. doi: 10.1016/j.jaap.2004.11.031
    [97] MAYER Z A, APFELBACHER A, HORNUNG A. Effect of sample preparation on the thermal degradation of metal-added biomass[J]. J Anal Appl Pyrol,2012,94:170−176. doi: 10.1016/j.jaap.2011.12.008
    [98] LI Y, LI K, HU B, et al. Catalytic fast pyrolysis of cellulose for selective production of 1-hydroxy-3,6-dioxabicyclo[3.2.1]octan-2-one using nickel-tin layered double oxides[J]. Ind Crop Prod,2021,162:113269. doi: 10.1016/j.indcrop.2021.113269
    [99] WANG Z, LU Q, ZHU X F, et al. Catalytic fast pyrolysis of cellulose to prepare levoglucosenone using sulfated zirconia[J]. ChemSusChem,2011,4(1):79−84. doi: 10.1002/cssc.201000210
    [100] LI F, LU T, CHEN B, et al. Pt nanoparticles over TiO2-ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1, 4-butanediol[J]. Appl Catal A-Gen,2014,478:252−258. doi: 10.1016/j.apcata.2014.04.012
    [101] KELKAR S, SAFFRON C M, ANDREASSI K, et al. A survey of catalysts for aromatics from fast pyrolysis of biomass[J]. Appl Catal B-Environ,2015,174-175:85−95. doi: 10.1016/j.apcatb.2015.02.020
    [102] PÜTÜN E. Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst[J]. Energy,2010,35(7):2761−2766. doi: 10.1016/j.energy.2010.02.024
    [103] VESES A, AZNAR M, MARTÍNEZ I, et al. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts[J]. Bioresource Technol,2014,162:250−258. doi: 10.1016/j.biortech.2014.03.146
    [104] LI J, YAN R, XIAO B, et al. Preparation of Nano-NiO particles and evaluation of their catalytic activity in pyrolyzing biomass components[J]. Energ Fuel,2008,22(1):16−23. doi: 10.1021/ef700283j
    [105] FABBRI D, TORRI C, BARAVELLI V. Effect of zeolites and nanopowder metal oxides on the distribution of chiral anhydrosugars evolved from pyrolysis of cellulose: An analytical study[J]. J Anal Appl Pyrol,2007,80(1):24−29. doi: 10.1016/j.jaap.2006.12.025
    [106] FABBRI D, TORRI C, MANCINI I. Pyrolysis of cellulose catalysed by nanopowder metal oxides: production and characterisation of a chiral hydroxylactone and its role as building block[J]. Green Chem,2007,9(12):1374. doi: 10.1039/b707943e
    [107] DONAR Y O, SıNAĞ A. Catalytic effect of tin oxide nanoparticles on cellulose pyrolysis[J]. J Anal Appl Pyrol,2016,119:69−74. doi: 10.1016/j.jaap.2016.03.016
    [108] LI Y, HU B, NAQVI S R, et al. Selective preparation of 5-hydroxymethylfurfural by catalytic fast pyrolysis of cellulose over zirconium-tin mixed metal oxides[J]. J Anal Appl Pyrol,2021,155:105103. doi: 10.1016/j.jaap.2021.105103
    [109] SUN L, ZHANG X, CHEN L, et al. Effect of preparation method on structure characteristics and fast pyrolysis of biomass with Fe/CaO catalysts[J]. J Anal Appl Pyrol,2015,116:183−189. doi: 10.1016/j.jaap.2015.09.011
    [110] XIWEI X U, ENCHEN J, WANG M, et al. Rich hydrogen production from crude gas secondary catalytic cracking over Fe/γ-Al2O3[J]. Renew Energ,2012,39(1):126−131. doi: 10.1016/j.renene.2011.07.030
    [111] KIM P, RIALS T G, LABBE N, et al. Screening of mixed-metal oxide species for catalytic ex situ vapor-phase deoxygenation of cellulose by py-GC/MS coupled with multivariate analysis[J]. Energ Fuel,2016,30(4):3167−3174. doi: 10.1021/acs.energyfuels.6b00347
    [112] DING Y L, WANG H Q, XIANG M, et al. The effect of Ni-ZSM-5 catalysts on catalytic pyrolysis and hydro-pyrolysis of biomass[J]. Front Chem,2020,8:790. doi: 10.3389/fchem.2020.00790
    [113] TAARNING E, OSMUNDSEN C M, YANG X, et al. Zeolite-catalyzed biomass conversion to fuels and chemicals[J]. Energ Environ Sci,2011,4(3):793−804. doi: 10.1039/C004518G
    [114] ASADIERAGHI M, ASHRI WAN DAUD W M, ABBAS H F. Heterogeneous catalysts for advanced bio-fuel production through catalytic biomass pyrolysis vapor upgrading: a review[J]. RSC Adv,2015,5(28):22234−22255. doi: 10.1039/C5RA00762C
    [115] CARLSON T R, TOMPSETT G A, CONNER W C, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Top Catal,2009,52(3):241−252. doi: 10.1007/s11244-008-9160-6
    [116] WANG K, KIM K H, BROWN R C. Catalytic pyrolysis of individual components of lignocellulosic biomass[J]. Green Chem,2014,16(2):727−735. doi: 10.1039/C3GC41288A
    [117] GAYUBO A G, AGUAYO A T, ATUTXA A, et al. Transformation of oxygenate components of biomass pyrolysis Oil on a HZSM-5 Zeolite. I. alcohols and phenols[J]. Ind Eng Chem Res,2004,43(11):2610−2618. doi: 10.1021/ie030791o
    [118] GAYUBO A G, AGUAYO A T, ATUTXA A, et al. Transformation of oxygenate components of biomass pyrolysis Oil on a HZSM-5 zeolite. II. aldehydes, ketones, and acids[J]. Ind Eng Chem Res,2004,43(11):2619−2626. doi: 10.1021/ie030792g
    [119] JAE J, TOMPSETT G A, FOSTER A J, et al. Investigation into the shape selectivity of zeolite catalysts for biomass conversion[J]. J Catal,2011,279(2):257−268. doi: 10.1016/j.jcat.2011.01.019
    [120] YU Y, LI X, SU L, et al. The role of shape selectivity in catalytic fast pyrolysis of lignin with zeolite catalysts[J]. Appl Catal A-Gen,2012,447-448:115−123. doi: 10.1016/j.apcata.2012.09.012
    [121] VESES A, PUÉRTOLAS B, CALLÉN M S, et al. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties[J]. Micropor Mesopor Mat,2015,209:189−196. doi: 10.1016/j.micromeso.2015.01.012
    [122] MULLEN C A, BOATENG A A. Production of aromatic hydrocarbons via catalytic pyrolysis of biomass over Fe-Modified HZSM-5 zeolites[J]. ACS Sustain Chem Eng,2015,3(7):1623−1631. doi: 10.1021/acssuschemeng.5b00335
    [123] ENNAERT T, VAN AELST J, DIJKMANS J, et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass[J]. Chem Soc Rev,2016,45(3):584−611. doi: 10.1039/C5CS00859J
    [124] KIM Y H, LEE K H, NAM C M, et al. Formation of hierarchical pore structures in Zn/ZSM-5 to improve the catalyst stability in the aromatization of branched olefins[J]. ChemCatChem,2012,4(8):1143−1153. doi: 10.1002/cctc.201200007
    [125] NEUMANN G T, HICKS J C. Novel Hierarchical Cerium-Incorporated MFI Zeolite Catalysts for the Catalytic Fast Pyrolysis of Lignocellulosic Biomass[J]. ACS Catal,2012,2(4):642−646. doi: 10.1021/cs200648q
    [126] VESES A, PUERTOLAS B, LOPEZ J M, et al. Promoting deoxygenation of Bio-Oil by metal-loaded hierarchical ZSM-5 zeolites[J]. ACS Sustain Chem Eng,2016,4(3):1653−1660. doi: 10.1021/acssuschemeng.5b01606
    [127] NISHU, LIU R, RAHMAN M M, et al. Catalytic pyrolysis of microcrystalline cellulose extracted from rice straw for high yield of hydrocarbon over alkali modified ZSM-5[J]. Fuel (Guildford),2021,285:119038. doi: 10.1016/j.fuel.2020.119038
    [128] CHENG Y T, WANG Z, GILBERT C J, et al. Production of p-xylene from biomass by catalytic fast pyrolysis using ZSM-5 catalysts with reduced pore openings[J]. Angew Chem Int Ed Engl,2012,51(44):11097−11100. doi: 10.1002/anie.201205230
    [129] ZHANG B, ZHONG Z, WANG X, et al. Catalytic upgrading of fast pyrolysis biomass vapors over fresh, spent and regenerated ZSM-5 zeolites[J]. Fuel Process Technol,2015,138:430−434. doi: 10.1016/j.fuproc.2015.06.011
    [130] WANG J, ZHONG Z, DING K, et al. Catalytic fast pyrolysis of mushroom waste to upgraded bio-oil products via pre-coked modified HZSM-5 catalyst[J]. Bioresource Technol,2016,212:6−10. doi: 10.1016/j.biortech.2016.04.005
    [131] WANG K, ZHANG J, SHANKS B H, et al. The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation[J]. Appl Energ,2015,148:115−120. doi: 10.1016/j.apenergy.2015.03.034
    [132] SHAOLONG W Y W. A review on ex situ catalytic fast pyrolysis of biomass[J]. Front Chem Sci Eng,2014,8(3):280−294. doi: 10.1007/s11705-014-1436-8
    [133] GALADIMA A, MURAZA O. In situ fast pyrolysis of biomass with zeolite catalysts for bioaromatics/gasoline production: A review[J]. Energ Convers Manage,2015,105:338−354. doi: 10.1016/j.enconman.2015.07.078
    [134] LI B, OU L, DANG Q, et al. Techno-economic and uncertainty analysis of in situ and ex situ fast pyrolysis for biofuel production[J]. Bioresource Technol,2015,196:49−56. doi: 10.1016/j.biortech.2015.07.073
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  14
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回