留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物质基糠醛和5-羟甲基糠醛加氢转化研究进展

张军 李丹妮 袁浩然 王树荣 陈勇

张军, 李丹妮, 袁浩然, 王树荣, 陈勇. 生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60135-4
引用本文: 张军, 李丹妮, 袁浩然, 王树荣, 陈勇. 生物质基糠醛和5-羟甲基糠醛加氢转化研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60135-4
ZHANG Jun, LI Dan-ni, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Advance on catalytic hydrogenation of biomass derived furfural and 5-hydroxymethylfurfural[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60135-4
Citation: ZHANG Jun, LI Dan-ni, YUAN Hao-ran, WANG Shu-rong, CHEN Yong. Advance on catalytic hydrogenation of biomass derived furfural and 5-hydroxymethylfurfural[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60135-4

生物质基糠醛和5-羟甲基糠醛加氢转化研究进展

doi: 10.1016/S1872-5813(21)60135-4
基金项目: 国家自然科学基金面上项目(51976222)、能源清洁利用国家重点实验室开放基金课题(ZJU-CEU2020023)资助
详细信息
    通讯作者:

    袁浩然(1981−),男,博士,研究员,博导,020-87013240,yuanhr@ms.giec.ac.cn,主要从事有机固废清洁利用方向研究 注:张军和李丹妮为本文共同第一作者

  • 中图分类号: TQ251.1

Advance on catalytic hydrogenation of biomass derived furfural and 5-hydroxymethylfurfural

Funds: The project was supported by the National Natural Science Foundation of China (51976222) and State Key Laboratory of Clean Energy Utilization (Open Fund Project No. ZJU-CEU2020023)
  • 摘要: 近年来,利用生物质基平台化合物转化制备各种燃料及高值化学品引起研究人员的广泛关注。5-羟甲基糠醛(HMF)和糠醛(FFR)作为一类重要的生物质衍生平台化合物,分子结构中醛基、呋喃环等官能团赋予其独特的化学性质。本文针对HMF和FFR在氢气、低碳醇、甲酸、硅烷等不同氢源中的催化加氢反应研究现状进行了阐述,对加氢转化过程主要影响因素如催化剂类型、反应条件以及反应机理等进行了详细分析,同时对HMF/FFR加氢转化研究前景进行了展望。
  • 图  1  FFR和HMF分子结构式

    Figure  1  The molecular structure of FFR and HMF

    图  2  FFR典型化学性质

    Figure  2  Typical chemical properties for FFR

    图  3  HMF典型化学性质

    Figure  3  Typical chemical properties for HMF

    图  4  MgO表面甲醇的可能转化过程[62]

    Figure  4  Possible conversion process of methanol on MgO surface[62]

    图  5  Cu/AC-SO3H催化剂上FFR可能加氢途径[34]

    Figure  5  Possible hydrogenation route of FFR on Cu/AC-SO3H catalyst[34]

    图  6  ZrO(OH)2催化剂上HMF合成BHMF反应机理

    Figure  6  The reaction mechanism of BHMF synthesis from HMF over ZrO(OH)2

    图  7  CuO-Pd/C催化剂表面FFR转化为FA的反应机理

    Figure  7  The reaction mechanism of the conversion of FFR to FA on CuO-Pd/C catalyst

    图  8  Pd/ZrP催化剂表面HMF转化为HDO的反应机理[75]

    Figure  8  The reaction mechanism of the conversion of HMF to HDO on Pd/ZrP catalyst[75]

    图  9  PMHS供氢Pd/C催化剂表面FFR转化反应机理[82]

    Figure  9  The reaction mechanism for FFR conversion over Pd/C using PMHS as hydrogen donor[82]

    图  10  FFR转化过程产物计算自由能图[82]

    Figure  10  Computational free energy diagrams of products during FFR conversion[82]

    表  1  FFR和HMF各项物化性质[24]

    Table  1  Physicochemical properties of HMF and FFR[24]

    ChemicalsFurfural (FFR)5-Hydroxymethylfurfural (HMF)
    molecular formulaC5H4O2C6H6O3
    molecular weight (g/mol)96.08126.11
    boiling point (K)435387−389
    melting point (K)237301−307
    density (g/cm3)1.161.24
    下载: 导出CSV

    表  2  分子H2作为氢源催化FFR和HMF加氢转化

    Table  2  Hydrogenation of FFR and HMF using molecular H2 as hydrogen source

    EntryCatalystSubstrateSolventTime /hTemperature/KPressure/MPaConversion/%ProductYield/%Ref.
    1Pt/HTFFRisopropanol44233 > 991,2-PeD73[29]
    2Pt/MCM-41HMFH2O23080.8100BHMF98.9[30]
    3Ru/Al2O3HMF1-butanol - H2O24032.792BHMF74.5[31]
    4Pt/CHMFethanol182961.4BHMF82[32]
    5Pt/Al2O3HMFethanol183331.4BHMF85[32]
    6Pt1Sn1/Al2O3HMFethanol53331.4BHMF82[32]
    7Pt/Co2AlO4FFRethanol244231.51,5-PeD31.9[33]
    8Cu/AC-SO3HFFRisopropanol23784100FA > 99.9[34]
    9Ni/NCNTsFFRH2O73734100THFA100[35]
    10Cu-Fe (1:2)HMFisopropanol4443297DMF90[36]
    11RuSn0. 4/CFFRH2O53631.2595FA94.7[37]
    12Ru(CO)/rGOFFRH2O5293193.3FA91[38]
    13Ni/CNFFRisopropanol4473196FA91[39]
    14Pd/Cu/MgOFFRH2O0.94030.8100FA99[40]
    15Pd-Ir-ReOx/SiO2FFRH2O80313−3736 > 99.91,5-PeD83[41]
    16Rh-Ir-ReOx/SiO2FFRH2O40313−3738 > 99.91,5-PeD71[42]
    17Ir-ReOx/SiO2FFRH2O64030.8>99FA>99[43]
    18Cu∶Zn∶Cr∶Zr(3∶2∶1∶3)FFRisopropanol3.54431100FA96[44]
    19CoAlHMFmethanol4393489.4BHMF83[45]
    20CuZrHMF1-Butanol24731.5100DMF60.6[46]
    21Ni(40)/MgO(30)-MFFR1-Butanol44134100THFA100[47]
    225Ni-12Cu /SBA-16HMFTHF44832100DMF60.7[48]
    23NiFeMgAlFFRethanol3443499.71,5-PeD31[49]
    下载: 导出CSV

    表  3  FFR、HMF加氢反应汇总(醇作氢供体)

    Table  3  The summary of FFR and HMF hydrogenation reactions (alcohol as hydrogen donor)

    EntryCatalystSubstratehydrogen donorTime
    /h
    Temperature
    /K
    Conversion
    /%
    ProductYield
    /%
    Ref.
    1Cu/AC-SO3HFFRisopropanol5423FA > 99.9[34]
    2Cu2AlFFRmethanol2.5473100FA94[16]
    3Cu3Al-AFFRmethanol1.5513100MF94.1[16]
    4MgOHMFmethanol3433100BHMF100[58]
    5Fe-L1/C-800FFR2-butanol1543391.6FA76[59]
    6ZrO(OH)2HMFethanol2.542394.1BHMF83.7[60]
    7Ru/NiFe2O4FFRisopropanol6453 > 97MF83[61]
    8Mg/Fe/OFFRmethanol165393MF83[62]
    9Cu-PMOHMFmethanol3533100DMF48[63]
    10Zr-LSFFR2-propanol137392.2FA91.6[55]
    11Zr1Fe1-150FFR2-propanol2453100FA99.1[64]
    12Ru/RuO2/CFFR2-butanol10453MF76[66]
    13MZH(Zr/Fe = 2)HMF2-butanol542398.4BHMF89.6[66]
    14Ru/RuO2/CFFR2-pentanol10453MF76[65]
    15Co3O4@MCHMFisopropanol12413100BHMF97[67]
    16Ru/Co3O4HMFisopropanol6463100BHMF82.8[68]
    17Pd/Fe2O3FFRisopropanol7.545387FA57[69]
    18Au/ZrO2FFRisopropanol3393100FA100[70]
    19Ni-SAs/NCFFRisopropanol340385.1FA82.6[71]
    20Zr@Co-2FFRisopropanol443393.9FA91.4[72]
    下载: 导出CSV

    表  4  FFR、HMF加氢反应汇总(甲酸作氢供体)

    Table  4  The summary of FFR and HMF hydrogenation reactions (formic acid as hydrogen donor)

    EntryCatalystSubstrateTime
    /h
    Temperature
    /K
    Conversion
    /%
    ProductYield
    /%
    Ref.
    1Cu/MgAl2O4HMF148390FA89[76]
    2CuO-Pd/CFFR3443100FA98.1[74]
    348NiHMF5493100DMF58.8[77]
    4Pd/ZrPHMF2141397HDO43[75]
    下载: 导出CSV

    表  5  FFR、HMF加氢反应汇总(甲酸作氢供体)

    Table  5  The summary of FFR and HMF hydrogenation reactions (formic acid as hydrogen donor)

    EntryCatalystHydrogen donorSubstrateTime
    /h
    Temperature
    /K
    Conversion
    /%
    ProductYield
    /%
    Ref.
    1 Pd/C-wet PMHS FFR 12 288 99 FA 95 [82]
    2 Pd/MIL-53(Al)-P PMHS HMF 2.5 298 100 DMF 99 [83]
    3 Pd/MIL-53(Al)-P PMHS FFR 2 298 100 MF 97 [83]
    4 PdCl2 PMHS HMF 0.5 298 100 DMF 89.7 [84]
    下载: 导出CSV
  • [1] TANG X, WEI J, DING N, SUN Y, ZENG X H, HU L, LIU S J, LEI T Z, LIN L. Chemoselective hydrogenation of biomass derived 5-hydroxymethylfurfural to diols: key intermediates for sustainable chemicals, materials and fuels[J]. Renew Sust Energ Rev,2017,77:287−296. doi: 10.1016/j.rser.2017.04.013
    [2] WANG Y T, ZHAO D Y, RODRÍGUEZ-PADRÓN D, LEN C. Recent advances in catalytic hydrogenation of furfural[J]. Catalysts,2019,9(10):796. doi: 10.3390/catal9100796
    [3] AYUDE M A, DOUMIC L I, CASSANELLO M C, NIGAM K D P. Clean catalytic oxidation for derivatization of key biobased platform chemicals: ethanol, glycerol, and hydroxymethyl furfural[J]. Ind Eng Chem Res,2019,58(35):16077−16095. doi: 10.1021/acs.iecr.9b00977
    [4] LI H, HE J, RIISAGER A, SARAVANAMURUGAN S, SONG B A, YANG S. Acid-base bifunctional zirconium n-alkyltriphosphate nanohybrid for hydrogen transfer of biomass-derived carboxides[J]. ACS Catal,2016,6(11):7722−7727. doi: 10.1021/acscatal.6b02431
    [5] JIN X, YIN B, XIA Q, FANG T, SHEN J, KUANG L, YANG C. Catalytic transfer hydrogenation of biomass-derived substrates to value-added chemicals on dual-function catalysts: opportunities and challenges[J]. ChemSusChem,2019,12(1):71−92. doi: 10.1002/cssc.201801620
    [6] YE L, HAN Y W, FENG J, LU X B. A review about GVL production from lignocellulose: focusing on the full components utilization[J]. Ind Crop Prod,2020,144:112031. doi: 10.1016/j.indcrop.2019.112031
    [7] ARSLANOĞLU A, SERT M. Direct conversion of biomass to platform chemicals, catalyzed using a deep eutectic solvent of N, N diethyl ethanol ammonium chloride-oxalic acid in a microwave reactor[J]. Fuel,2019,258:116142. doi: 10.1016/j.fuel.2019.116142
    [8] 常俊丽. 碳水化合物在乙醇介质中催化转化规律的研究[D]. 郑州: 郑州大学, 2015.

    CHANG Jun-li. The research on the law of carbohydrates catalyzed by the extremely low acid concentration in ethanol medium[D]. Zhengzhou: Zhengzhou University, 2015.
    [9] GAUDINO E C, CRAVOTTO G, MANZOLI M, TABASSO S. From waste biomass to chemicals and energy via microwave-assisted processes[J]. Green Chem,2019,21(6):1202−1235. doi: 10.1039/C8GC03908A
    [10] ŠIVEC R, GRILIC M, HUŠ M, LIKOZAR B. Multiscale modeling of (Hemi) cellulose hydrolysis and cascade hydrotreatment of 5-hydroxymethylfurfural, furfural, and levulinic Acid[J]. Ind Eng Chem Res,2019,58(35):16018−16032. doi: 10.1021/acs.iecr.9b00898
    [11] ZHAO P P, ZHANG Y Y, WANG Y, CUI H Y, SONG F, SUN X Y, ZHANG L P. Conversion of glucose into 5-hydroxymethylfurfural catalyzed by acid-base bifunctional heteropolyacid-based ionic hybrids[J]. Green Chem,2018,20(7):261−268.
    [12] MARISCAL R, MAIRELES-TORRES P, OJEDA M S, SADABA I, GRANADOS M L. Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels[J]. Energ Environ Sci,2016,9(4):1144−1189. doi: 10.1039/C5EE02666K
    [13] TOMISHIGE K, NAKAGAWA Y, TAMURA M. Selective hydrogenolysis of C-O bonds using the interaction of the catalyst surface and -OH groups[J]. Topics Curr Chem,2014,353:127−162.
    [14] HU L, XU J X, ZHOU S Y, HE A Y, TANG X, LIN L, XU J M, ZHAO Y J. Catalytic advances in the production and application of biomass-derived 2,5-dihydroxymethylfuran[J]. ACS Catal,2018,8(4):2959−2980. doi: 10.1021/acscatal.7b03530
    [15] WANG Z W, LI H, FANG C J, ZHAO W F, YANG T T, YANG S. Simply assembled acidic nanospheres for efficient production of 5-ethoxymethylfurfural from 5-hydromethylfurfural and fructose[J]. Energy Technol-Ger,2017,5(11):2046−2054. doi: 10.1002/ente.201700153
    [16] ZHANG J, CHEN J. Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor[J]. ACS Sustain Chem Eng,2017,5(7):5982−5993. doi: 10.1021/acssuschemeng.7b00778
    [17] SATO S, IGARASHI J, YAMADA Y. Stable vapor-phase conversion of tetrahydrofurfuryl alcohol into 3, 4-2H-dihydropyran[J]. Appl Catal A-Gen,2013,453:213−218. doi: 10.1016/j.apcata.2012.12.017
    [18] YAN K, CHEN A. Efficient hydrogenation of biomass-derived furfural and levulinic acid on the facilely synthesized noble-metal-free Cu-Cr catalyst[J]. Energy,2013,58:357−363. doi: 10.1016/j.energy.2013.05.035
    [19] ROMAN-LESHKOV Y, BARETT C J, LIU Z Y, DUMESIC J A. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates[J]. Nature,2007,447(7147):982−985. doi: 10.1038/nature05923
    [20] CAI H L, LI C Z, WANG A Q, ZHANG T. Biomass into chemicals: one-pot production of furan-based diols from carbohydrates via tandem reactions[J]. Catal Today,2014,234:59−65. doi: 10.1016/j.cattod.2014.02.029
    [21] SAIKIA K, RATHANKUMAR A K, KUMAR P S, VARJANI S, NIZAR M, LENIN R, GEORGR J, VAIDYANATHAN V K. Recent advances in biotransformation of 5‐hydroxymethylfurfural: challenges and future aspects[J]. J Chem Technol Biot,2021,.
    [22] TONG X L, MA Y, LI Y D. Biomass into chemicals: conversion of sugars to furan derivatives by catalytic processes[J]. Appl Catal A-Gen,2010,385(1-2):1−13. doi: 10.1016/j.apcata.2010.06.049
    [23] SONG H, KONG X, WEI X J, BUTLER I A, XU L J, FANG Z, KOZINSKI J A, ZHU Y F. Catalytic conversion of 5-hydroxymethylfurfural to some value-added derivatives[J]. Green Chem,2018,20(16):3657−3682. doi: 10.1039/C8GC00234G
    [24] CHEN S, WOJCIESZAK R, DUMEIGNIL F, MARCEAU E, ROYER S. How catalysts and experimental conditions determine the selective hydroconversion of furfural and 5-hydroxymethylfurfural[J]. Chem Rev,2018,118(22):11023−11117. doi: 10.1021/acs.chemrev.8b00134
    [25] YIN S S, SUN J, LIU B, ZHANG Z H. Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates[J]. J Mater Chem A,2015,3(9):4992−4999. doi: 10.1039/C4TA06135G
    [26] YU W T, POROSOFF M D, CHEN J G. Review of Pt-based bimetallic catalysis: from model surfaces to supported catalysts[J]. Chem Rev,2012,112(11):5780−5817. doi: 10.1021/cr300096b
    [27] XU C, PAONE E, RODRÍGUEZ-PADRÓN D, LUQUE R, MAURIELLO F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural[J]. Chem Soc Rev,2020,49:4273−4306. doi: 10.1039/D0CS00041H
    [28] ZHU Y F, KONG X, ZHENG H Y, DING G Q, ZHU Y L, LI Y W. Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts[J]. Catal Sci Technol,2015,5(8):4208−4217. doi: 10.1039/C5CY00700C
    [29] MIZUGAKI, T, AMAKAWA T, NAGATSU Y, MAENO Z, MITSUDOME T, JITSUKAWA K, KANEDA K. Direct Transformation of Furfural to 1, 2-Pentanediol Using a Hydrotalcite-Supported Platinum Nanoparticle Catalyst[J]. ACS Sustain Chem Eng,2014,2(10):2243−2247. doi: 10.1021/sc500325g
    [30] CHATTERJEE, M, ISHIZAKA T, KAWANAMI K. Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach[J]. Green Chem,2014,16(11):4734−4739. doi: 10.1039/C4GC01127A
    [31] ALAMILLO R, TUCKER M H, CHIA M, PAGAN-TORRES Y, DUMESIC J. The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts[J]. Green Chem,2012,14(5):1413−1419. doi: 10.1039/c2gc35039d
    [32] BALAKRISHNAN M, SACIA E R, BELL A T. Etherification and reductive etherification of 5-(hydroxymethyl)furfural: 5-(alkoxymethyl)furfurals and 2,5-bis(alkoxymethyl)furans as potential bio-diesel candidates[J]. Green Chem,2012,14(6):1626−1634. doi: 10.1039/c2gc35102a
    [33] Xu W, WANG H, LIU X, REN J, WANG Y, LU G. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst[J]. Chem Commun,2011,47(13):3924−3926. doi: 10.1039/c0cc05775d
    [34] GONG W B, CHEN C, ZHANG Y, ZHOU H J, WANG H M. Efficient synthesis of furfuryl alcohol from H2-hydrogenation/transfer hydrogenation of furfural using sulfonate group modified Cu catalyst[J]. ACS Sustain Chem Eng,2017,5(3):2172−2180. doi: 10.1021/acssuschemeng.6b02343
    [35] GONG W B, ZHANG H M, WANG G Z, ZHAO H J. Highly dispersed Co and Ni nanoparticles encapsulated in N-doped carbon nanotubes as efficient catalysts for the reduction of unsaturated oxygen compounds in aqueous phase[J]. Catal Sci Technol,2018,8(21):5506−5514. doi: 10.1039/C8CY01488D
    [36] SOLANKI B S, RODE C V. Selective hydrogenation of 5-HMF to 2,5-DMF over a magnetically recoverable non-noble metal catalyst[J]. Green Chem,2019,21(23):6390−6406. doi: 10.1039/C9GC03091C
    [37] MUSCI J J, MERLO A B, CASELLA M L. Aqueous phase hydrogenation of furfural using carbon-supported Ru and RuSn catalysts[J]. Catal Today,2017,296:43−50. doi: 10.1016/j.cattod.2017.04.063
    [38] RAMIREZ-BARRIA C, LSAACS M, WILSON K, GUERRERO-RUIZ A, RODRÍGUEZ-RAMOS I. Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol[J]. Appl Catal A-Gen,2018,563:177−184. doi: 10.1016/j.apcata.2018.07.010
    [39] KOTBAGI, T. V, GURAV H, NAGPURE A S, CHILUKURI S, BAKKER G. Highly efficient nitrogen-doped hierarchically porous carbon supported Ni nanoparticles for the selective hydrogenation of furfural to furfuryl alcohol[J]. RSC Adv,2016,6(72):67662−67668. doi: 10.1039/C6RA14078E
    [40] FULAJTÁROVA K, SOTÁK K, HRONEC M, VÁVRA L, DOBROČKA E, OMASTOVÁ M. Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd–Cu catalysts[J]. Appl Catal A-Gen,2015,502:78−85. doi: 10.1016/j.apcata.2015.05.031
    [41] LIU S B, AMADA Y, TAMURA M, NAKAGAWA Y, TOMISHIGE K. One-pot selective conversion of furfural into 1,5-pentanediol over a Pd-added Ir–ReOx/SiO2 bifunctional catalyst[J]. Green Chem,2014,16(2):617−626. doi: 10.1039/C3GC41335G
    [42] LIU S B, AMADA Y, TAMURA M, NAKAGAWA Y, TOMISHIGE K. Performance and characterization of rhenium-modified Rh–Ir alloy catalyst for one-pot conversion of furfural into 1,5-pentanediol[J]. Catal Sci Technol,2014,4(8):2535−2549. doi: 10.1039/C4CY00161C
    [43] TAMURA M, TOKONAMI K, NAKAGAWA Y, TOMISHIGE K. Rapid synthesis of unsaturated alcohols under mild conditions by highly selective hydrogenation[J]. Chem Commun,2013,49(63):7034−7036. doi: 10.1039/c3cc41526k
    [44] SHARMA R V, DAS U, SAMMYNAIKEN S, DALAI A K. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol[J]. Appl Catal A-Gen,2013,454:127−136. doi: 10.1016/j.apcata.2012.12.010
    [45] YAO S X, WANG X C, JIANG Y J, WU F, CHEN X G, MU X D. One-Step Conversion of biomass-derived 5-hydroxymethylfurfural to 1, 2, 6-hexanetriol over Ni–Co–Al mixed oxide catalysts under mild conditions[J]. ACS Sustain Chem Eng,2013,2(2):173−180.
    [46] IRIONDO A, MENDIGUREN A, GÜEMEZ M B, REQUIES J, CAMBRA J F. 2,5-DMF production through hydrogenation of real and synthetic 5-HMF over transition metal catalysts supported on carriers with different nature[J]. Catal Today,2017,279:286−295. doi: 10.1016/j.cattod.2016.02.019
    [47] SUNYOL C, OWEN R E, GONZÁLEZ M D, SALAGRE P, CESTEROS Y. Catalytic hydrogenation of furfural to tetrahydrofurfuryl alcohol using competitive nickel catalysts supported on mesoporous clays[J]. Appl Catal A-Gen,2021,611:117903. doi: 10.1016/j.apcata.2020.117903
    [48] UMASANKAR S, TAMIZHDURAI P, KRISHNAN P S, NARAYANAN, S, MANGESH V L, SHANTHI K. Effect of copper on NiCu bimetallic catalyst supported on SBA-16 for the catalytic hydrogenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran[J]. Biomass Bioenergy,2020,143:105868. doi: 10.1016/j.biombioe.2020.105868
    [49] SHAO Y W, WANG J Z, SUN K, GAO G M, LI C, ZHANG L J, ZHANG S, XU L L, HE G Z, HU X. Selective hydrogenation of furfural and its derivative over bimetallic NiFe-based catalysts: Understanding the synergy between Ni sites and Ni–Fe alloy[J]. Renewable Energy,2021,170:1114−1128. doi: 10.1016/j.renene.2021.02.056
    [50] ROMANO P N, ALMEIDA J M A R, CARVALHO Y, PRIECEL P, SOUSA-AGUIAR E F, JOSE A LOPEZ-SANCHEZ J A. Microwave-assisted selective hydrogenation of furfural to furfuryl alcohol employing a green and noble metal-free copper catalyst[J]. ChemSusChem,2016,9(24):3387−3392. doi: 10.1002/cssc.201601398
    [51] NAGARAJA B M, PADMASRI A H, RAJU B D, RAO K S P. Production of hydrogen through the coupling of dehydrogenation and hydrogenation for the synthesis of cyclohexanone and furfuryl alcohol over different promoters supported on Cu–MgO catalysts[J]. Int J Hydrogen Energ,2011,36(5):3417−3425. doi: 10.1016/j.ijhydene.2010.12.013
    [52] GUILLERMO R BERTOLINI, CARMEN P JIMÉNEZ-GÓMEZ, JUAN ANTONIO CECILIA, PEDRO MAIRELES-TORRES. Gas-phase hydrogenation of furfural to furfuryl alcohol over Cu-ZnO-Al2O3 catalysts prepared from layered double hydroxides[J]. Catalysts,2020,10(5):486. doi: 10.3390/catal10050486
    [53] CARMEN P. JIMÉNEZ-GÓMEZ, JUAN A. CECILIA, RAMJN MORENO-TOST, AND PEDRO MAIRELES-TORRES. Nickel phosphide/silica catalysts for the gas-phase hydrogenation of furfural to high–added–valuechemicals[J]. ChemCatChem,2017,9:2881−2889. doi: 10.1002/cctc.201700312
    [54] CARMEN PILAR JIMÉNEZ-GÓMEZ, JUAN A. CECILIA, RAMJN MORENO-TOST, AND PEDRO MAIRELES-TORRES. Selective production of 2-methylfuran by gas-phase hydrogenation of furfural on copper incorporated by complexation in mesoporous silica catalysts[J]. ChemSusChem,2017,10:1448−1459. doi: 10.1002/cssc.201700086
    [55] ZHOU S H, DAI F L, XIANG Z Y, SONG T, LIU D T, LV F C, QI H S. Zirconium–lignosulfonate polyphenolic polymer for highly efficient hydrogen transfer of biomass-derived oxygenates under mild conditions[J]. Appl Catal B-Environ,2019,248:31−43. doi: 10.1016/j.apcatb.2019.02.011
    [56] MADERUELO-SOLERA R, LÓPEZ-ASENSIO R, CECILIA J A, JIMÉNEZ-GÓMEZ C P, MAIRELES-TORRES P. Catalytic Transfer hydrogenation of furfural to furfuryl alcohol over calcined MgFe hydrotalcites[J]. Appl Clay Sci,2019,183:105351. doi: 10.1016/j.clay.2019.105351
    [57] ZHANG J, DONG K J, LUO W M, GUAN H F. Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors[J]. ACS Omega,2018,3(6):6206−6216. doi: 10.1021/acsomega.8b00138
    [58] PASINI T, LOLLI A, ALBONETTI S, CAVANI F, MELLA M. Methanol as a clean and efficient H-transfer reactant for carbonyl reduction: Scope, limitations, and reaction mechanism[J]. J Catal,2014,317:206−219. doi: 10.1016/j.jcat.2014.06.023
    [59] LI J, LIU J, ZHOU H, YAO F. Catalytic transfer hydrogenation of furfural to furfuryl alcohol over nitrogen-doped carbon-supported iron catalysts[J]. ChemSusChem,2016,9(11):1339−1347. doi: 10.1002/cssc.201600089
    [60] HAO W W, LI W F, TANG X, ZENG X H. Catalytic transfer hydrogenation of biomass-derived 5-hydroxymethyl furfural to the building block 2,5-bishydroxymethyl furan[J]. Green Chem,2016,18(4):1080−1088. doi: 10.1039/C5GC01221J
    [61] WANG B W, LI C, HE B, QI J, LIANG C H. Highly stable and selective Ru/NiFe2O4 catalysts for transfer hydrogenation of biomass-derived furfural to 2-methylfuran[J]. J Energy Chem,2017,26(4):799−807. doi: 10.1016/j.jechem.2017.04.008
    [62] GRAZIA L, LOLLI A, FOLCO L, ZHANG Y, ALBONETTI S, CAVANI F. Gas-phase cascade upgrading of furfural to 2-methylfuran using methanol as a H-transfer reactant and MgO based catalysts[J]. Catal Sci Technol,2016,6(12):4418−4427. doi: 10.1039/C5CY02021B
    [63] HANSEN T S, BARTA K, ANASTA P T, FORD P C, RIISAGER A. One-pot reduction of 5-hydroxymethylfurfural via hydrogen transfer from supercritical methanol[J]. Green Chem,2012,14(9):2457−2461. doi: 10.1039/c2gc35667h
    [64] GU J, ZHANG J, WANG Y Z, LI D N, HUANG H Y, YUAN H R, CHEN Y. Efficient transfer hydrogenation of biomass derived furfural and levulinic acid via magnetic zirconium nanoparticles: Experimental and kinetic study[J]. Ind Crops Products,2020,145:112133. doi: 10.1016/j.indcrop.2020.112133
    [65] PANAGIOTOPOULOU P, MARTIN P N, VLACHOS D G. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst[J]. J Mol Catal A-Chem,2014,392:223−228. doi: 10.1016/j.molcata.2014.05.016
    [66] HU L, YANG M, XU N, XU J X, ZHOU S Y, CHU X Z, ZHAO Y J. Selective transformation of biomass-derived 5-hydroxymethylfurfural into 2,5-dihydroxymethylfuran via catalytic transfer hydrogenation over magnetic zirconium hydroxides[J]. Korean J Chem Eng,2017,35(1):99−109.
    [67] WANG G H, DENG X H, GU D, CHEN K, TÜYSÜZ H, SPLIETHOFF B, BONGARD H, WEIDENTHALER C, SCHMIDT W, SCHÎTH F. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of alpha, beta-unsaturated aldehydes[J]. Angew Chem Int Edit,2016,55(37):11101−11105. doi: 10.1002/anie.201604673
    [68] WANG T, ZHANG J H, XIE W X, TANG Y J, GUO D L, NI Y H. Catalytic transfer hydrogenation of biobased HMF to 2,5-bis-(hydroxymethyl)furan over Ru/Co3O4[J]. Catal,2017,7(12):92. doi: 10.3390/catal7030092
    [69] ADDIS D, DAS S, JUNGE K, BELLER M. Selective reduction of carboxylic acid derivatives by catalytic hydrosilylation[J]. Angew Chem Int Edit,2011,50(27):6004−6011. doi: 10.1002/anie.201100145
    [70] ZHU S H, XUE Y F, GUO J, CEN Y L, WANG J G, FAN W B. Integrated conversion of hemicellulose and furfural into γ-valerolactone over Au/ZrO2 catalyst combined with ZSM-5[J]. ACS Catal,2016,6(3):2035−2042. doi: 10.1021/acscatal.5b02882
    [71] FAN Y F, ZHUANG C F, LI S J, WANG Y, ZOU X Q, LIU X T, HUANG W M, ZHU G S. Efficient single-atom Ni for catalytic transfer hydrogenation of furfural to furfuryl alcohol[J]. J Mater Chem A,2021,9(2):1110−1118. doi: 10.1039/D0TA10838C
    [72] HOU P, MA M W, ZHANG P, CAO J J, LIU H, XU X L, YUE H J, TANG G, FANG S H. Catalytic transfer hydrogenation of furfural to furfuryl alcohol using easy-to-separate core–shell magnetic zirconium hydroxide[J]. New J Chem,2021,45(5):2715−2722. doi: 10.1039/D0NJ05638C
    [73] GRASEMANN M, LAURENCZY G. Formic acid as a hydrogen source – recent developments and future trends[J]. Energ Environ Sci,2012,5(8):8171−8181. doi: 10.1039/c2ee21928j
    [74] DU J, ZHAN J R, SUN Y, JIA W L, SI Z H, GAO H, TANG X, ZENG X H, LEI T Z, LIU S J, LIN L. Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol over in-situ prepared nano Cu-Pd/C catalyst using formic acid as hydrogen source[J]. Chinese J Catal,2018,368:69−78. doi: 10.1016/j.jcat.2018.09.025
    [75] TUTEJA J, CHOUDARY H, NISHIMURA S, EBITANI K. Direct synthesis of 1,6-hexanediol from HMF over a heterogeneous Pd/ZrP catalyst using formic acid as hydrogen source[J]. ChemSusChem,2014,7(1):96−100. doi: 10.1002/cssc.201300832
    [76] NAGAIAH P, GIDYONU P, ASHOKRAJU M, RAO M V, CHALLA P, BURRI D R, KAMARAJU S R R. Magnesium aluminate supported Cu catalyst for selective transfer hydrogenation of biomass derived furfural to furfuryl alcohol with formic acid as hydrogen donor[J]. ChemistrySelect,2019,4(1):145−151. doi: 10.1002/slct.201803645
    [77] SUN Y, XIONG C X, ZHANG J R, TANG X, ZENG X H, LIU S J, LIN L. Catalytic transfer hydrogenolysis/hydrogenation of biomass-derived 5-formyloxymethylfurfural to 2,5-dimethylfuran over Ni–Cu bimetallic catalyst with formic acid as a hydrogen donor[J]. Ind Eng Chem Res,2019,58(14):5414−5422. doi: 10.1021/acs.iecr.8b05960
    [78] BASU B, DAS P, DAS S. Transfer hydrogenation using recyclable polymer-supported formate (PSF): efficient and chemoselective reduction of nitroarenes[J]. Mol Divers,2005,9(4):259−262. doi: 10.1007/s11030-005-8106-1
    [79] ABBINA S, DU G D. Scope and mechanistic studies of catalytic hydrosilylation with a high-valent nitridoruthenium(VI)[J]. ACS Catal,2013,3(4):678−684. doi: 10.1021/cs300848h
    [80] SOMMER L H, PIEYRUSZA E W, WHITMORE F C. Peroxide-catalyzed addition of trichlorosilane to 1-octene[J]. J Am Chem Soc,1947,69(1):188.
    [81] ROY S R, SAU S C, MANDAL S K. Chemoselective reduction of the carbonyl functionality through hydrosilylation: integrating click catalysis with hydrosilylation in one pot[J]. J Org Chem,2014,79(19):9150−9160. doi: 10.1021/jo501505j
    [82] LI H, ZHAO W F, SARAVANAMURUGAN S, DAI W S, HE J, MEIER S, YANG S, RIISAGER A. Control of selectivity in hydrosilane-promoted heterogeneous palladium-catalysed reduction of furfural and aromatic carboxides[J]. Commun Chem,2018,1(32):1−11.
    [83] LI H, ZHAO W F, FANG Z. Hydrophobic Pd nanocatalysts for one-pot and high-yield production of liquid furanic biofuels at low temperatures[J]. Appl Catal B-Environ,2017,215:18−27. doi: 10.1016/j.apcatb.2017.05.039
    [84] ZHANG J, DONG K J, LUO W M. PdCl2-catalyzed hydrodeoxygenation of 5-hydroxymethylfurfural into 2,5-dimethylfuran at room-temperature using polymethylhydrosiloxane as the hydrogen donor[J]. Chem Eng Sci,2019,201:467−474. doi: 10.1016/j.ces.2019.03.011
    [85] QIU M, GUO T M, X R, LI D N, QI X H. Highly efficient catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol using UiO-66 without metal catalysts[J]. Appl Catal A-Gen,2020,602:117719. doi: 10.1016/j.apcata.2020.117719
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  58
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-07-03
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回