留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模型碳催化加氢气化反应特性研究

曲旋 王沁汾 严帅 冯俊 张建树 张荣 毕继诚

曲旋, 王沁汾, 严帅, 冯俊, 张建树, 张荣, 毕继诚. 模型碳催化加氢气化反应特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60136-6
引用本文: 曲旋, 王沁汾, 严帅, 冯俊, 张建树, 张荣, 毕继诚. 模型碳催化加氢气化反应特性研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60136-6
QU Xuan, WANG Qin-fen, YAN Shuai, FENG Jun, ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng. The behavior of the different catalysts for model carbon hydrogasification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60136-6
Citation: QU Xuan, WANG Qin-fen, YAN Shuai, FENG Jun, ZHANG Jian-shu, ZHANG Rong, BI Ji-cheng. The behavior of the different catalysts for model carbon hydrogasification[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60136-6

模型碳催化加氢气化反应特性研究

doi: 10.1016/S1872-5813(21)60136-6
基金项目: NSFC-新疆联合基金(U1703253)、煤转化国家重点实验室青年人才基金(2021BWZ001)和山西省自然科学基金(201801D121287)资助
详细信息
    通讯作者:

    Tel: 0993-2057227, E-mail: zjschem@163.com

    Tel: 0993-2057227, E-mail: zjschem@163.com

  • 中图分类号: TQ53

The behavior of the different catalysts for model carbon hydrogasification

Funds: The project was supported by NSFC-Xinjiang joint fund (U1703253) and Young talent fund of State Key Laboratory of Coal Conversion (2021BWZ001) and Natural Science Foundation of Shanxi Province (201801D121287)
More Information
  • 摘要: 在加压热天平中研究了活性炭/烟煤半焦/无烟煤半焦等模型碳催化加氢气化(CCHG)的特性,并结合GC、BET等表征对碳的物理结构和化学反应过程的分析,初步获悉了Co对碳-氢反应的催化作用过程。结果表明,碳CCHG过程中过渡金属(Fe、Co、Ni)的催化活性明显高于碱金属和碱土金属(K、CaO、MgO),过渡金属CCHG过程存在低温 (600−750 ℃)和高温 (> 800 ℃) 两个特征催化区域,低温催化区域的出现主要归因于过渡金属催化剂氧化物与碳发生相互作用,部分碳结构得到活化的同时过渡金属嵌入到碳层结构中更为有效的发挥供氢和断键作用。Co催化剂在850 ℃和1 MPa氢压以上的条件下,催化剂的供氢作用可达到饱和,碳的催化加氢气化过程主要为温度促使的催化断键反应。具有高比表面和低致密程度碳结构的模型碳在较低的催化剂负载量下即可具有高的CCHG活性。
  • 图  1  加压热天平装置示意图

    Figure  1  Schematic diagram of the pressurized thermogravimetric analyzer

    图  2  不同催化剂对HXT的催化加氢气化活性

    Figure  2  Effect of catalyst on CCHG reactivity of HXT (T=850 ℃,P=3.0 MPa)

    (a): carbon conversion (b): weight loss rate

    图  3  不同Co负载量对HXT催化加氢气化活性的影响

    Figure  3  Effect of Co loading on CCHG activity of HXT(T=850 ℃,P=3.0 MPa)

    (a):Carbon conversion (b):Weight loss rate

    图  4  压力和温度对HXT催化加氢气化活性的影响

    Figure  4  Effect of pressure and temperature on CCHG reactivity of HXT

    (a): pressure (b): temperature

    图  5  HXT低温催化区域(600−750 ℃)气体产物分析

    Figure  5  Analysis of gas products in low temperature catalytic zone (600−750 ℃) of HXT

    图  6  负载在碳上的氧化钴被氢气和碳还原的热力学分析

    Figure  6  Thermodynamic analysis of the reduction of cobalt oxide loaded on carbon by hydrogen and carbon

    图  7  负载2%Fe/Co/Ni-HXT的TPR-MS分析

    Figure  7  TPR-MS Analysis of 2% Fe/Co/Ni-HXT

    图  8  模型碳的比表面与CCHG活性的关系

    Figure  8  Relationship between the specific surface of model carbon and CCHG activity (a):Carbon conversion of FG (b): Carbon conversion of FGKK(T=850 ℃,P=1.0 MPa)

    图  9  温度和Ca的添加对YQ半焦催化加氢气化活性的影响

    Figure  9  Effect of temperature and the addition of calcium on CCHG activity of YQ coal char

    (a):Carbon conversion (b):Weight loss rate(P=1.0 MPa)

    表  1  不同煤焦的工业分析和元素分析

    Table  1  Proximate and ultimate analysis of char samples

    Sample
    Proximate analysis wd/%Ultimate analysis wdaf/%
    AdVdFCdCHNSOa
    HXT00.7399.2798.220.560.160.061.00
    FG0.831.0098.1791.650.731.940.245.44
    FGKK0.801.5597.6589.150.681.970.457.75
    YQ2.214.1193.6894.940.751.860.731.72
    d, dry basis; daf, dry-ash free basis; a, By difference
    下载: 导出CSV

    表  2  不同模型碳的的孔结构分析

    Table  2  Pore structure parameters of modern carbon samples

    SampleBET surface area
    A/(m2/g)
    Pore volume
    v/(cm3/g)
    Average pore
    size d/nm
    HXT12210.540.97
    FG0.770.00526.1
    FGKK11140.632.25
    YQ3.220.02935.5
    下载: 导出CSV
  • [1] 严帅, 夏梓洪, 陈彩霞, 曲旋, 毕继诚. 煤催化加氢气化研究进展[J]. 洁净煤技术,2021,27(1):60−72.

    YAN Shuai, XIA Zi-hong, CHEN Cai-xia, QU Xuan, BI Ji-cheng. Research progress on the technology of coal catalytic hydrogasification[J]. Clean Coal Technol,2021,27(1):60−72.
    [2] TAMAI Y, WATANABE H, TOMITA A. Catalytic gasification of carbon with steam carbon-dioxide and hydrogen[J]. Carbon,1977,15(2):103−106. doi: 10.1016/0008-6223(77)90024-0
    [3] LEE S H, LEE J G, KIM J H, CHOI Y C. Hydrogasification characteristics of bituminous coals in an entrained-flow hydrogasifier[J]. Fuel,2006,85(5-6):803−806. doi: 10.1016/j.fuel.2005.08.039
    [4] TOMITA A, HIGASHIYAMA K, TAMAI Y. Scanning electron-microscopic study on the catalytic gasification of coal[J]. Fuel,1981,60(2):103−114. doi: 10.1016/0016-2361(81)90003-X
    [5] YUAN S F, ZHANG N, QU X, BI J C, CAO Q, WANG J L. Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal[J]. Fuel,2017,200:153−161. doi: 10.1016/j.fuel.2017.03.066
    [6] HAGA T, NISHIYAMA Y. Enhancements in nickel-catalyzed hydrogasification of carbon by surface treatments[J]. Carbon,1983,21(3):219−223. doi: 10.1016/0008-6223(83)90083-0
    [7] SUZUKI T, IWASAKI J, TANKA K, OKAZAKI N, FUNAKI M, YAMADA T. Influence of calcium on the catalytic behavior of nickel in low temperature hydrogasification of wood char[J]. Fuel,1998,77(7):763−767. doi: 10.1016/S0016-2361(97)00240-8
    [8] JIANG J T, LIU Q Y, LIU Z Y. Superior catalytic effect of calcium oxide on the hydrogasification of char for CH4[J]. Fuel,2016,180:737−742. doi: 10.1016/j.fuel.2016.04.093
    [9] MATSUMOTO S, SAKAGAMI S. Catalytic gasification activity of iron enhanced by spilt-over hydrogen[J]. Stud Surf Sci Catal,1993,77:409−412.
    [10] HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of coal chars[J]. Ind Eng Chem Res,1989,28(6):724−728. doi: 10.1021/ie00090a013
    [11] LIU X H, XIONG B, HUANG X H, DING H R, ZHENG Y, LIU Z H, ZHENG C G. Effect of catalysts on char structural evolution during hydrogasification under high pressure[J]. Fuel,2017,188:474−482. doi: 10.1016/j.fuel.2016.10.053
    [12] MATSUMOTO S. Catalyzed hydrogasification of yallourn char in the presence of supported hydrogenation nickel catalyst[J]. Energy Fuels,1991,5(1):60−63. doi: 10.1021/ef00025a009
    [13] NISHIYAMA Y. Catalytic behaviour of iron and nickel in coal gasification[J]. Fuel,1986,65(10):1404−1409. doi: 10.1016/0016-2361(86)90114-6
    [14] HONG B Q, WANG X J, ZHOU Z J, YU G S. A comparison of the gas-product-release characteristics from coal pyrolysis and hydrogasification[J]. Energy Technol,2013,1:449−456. doi: 10.1002/ente.201300052
    [15] JIANG J T, LIU Z Y, LIU Q Y. Synergetic catalysis of calcium oxide and iron in hydrogasification of char[J]. Energy Fuels,2017,31:198−204. doi: 10.1021/acs.energyfuels.6b02026
    [16] 战书鹏, 王兴军, 洪冰清, 于广锁, 王辅臣. 褐煤催化加氢气化实验研究[J]. 燃料化学学报,2012,40(1):8−14. doi: 10.3969/j.issn.0253-2409.2012.01.002

    ZHAN Shu-peng, WANG Xing-jun, HONG Bing-qing, YU Guang-suo, WANG Fu-chen. Experimental study on catalytic hydrogasification of lignite[J]. J Fuel Chem Technol,2012,40(1):8−14. doi: 10.3969/j.issn.0253-2409.2012.01.002
    [17] 张峰, 孙浩, 张建树, 严帅, 曲旋, 张荣, 毕继诚. Fe的分散程度对煤焦催化加氢气化的影响[J]. 燃料化学学报,2019,47(4):402−410.

    ZHANG Feng, SUN Hao, ZHANG Jian-shu, YAN Shuai, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of dispersion degree of iron on catalytic hydrogasification of coal char[J]. J Fuel Chem Technol,2019,47(4):402−410.
    [18] HAGA T, NISHIYAMA Y. Promotion of iron-group catalysts by a calcium salt in hydrogasification of carbons at elevated pressures[J]. Ind Eng Chem Res,1987,26(6):1202−1206. doi: 10.1021/ie00066a023
    [19] WU X T, TANG J, Wang J. A new active site/intermediate kinetic model for K2CO3-catalyzed steam gasification of ash-free coal char[J]. Fuel,2016,165:59−67. doi: 10.1016/j.fuel.2015.10.034
    [20] ZOHEIDI H, MILLER D J. Role of oxygen surface groups in catalysis of hydrogasification of carbon black by potassium carbonate[J]. Carbon,1987,25(6):809−819. doi: 10.1016/0008-6223(87)90156-4
    [21] OHTSUKA Y, TAMAI Y, TOMITA A. Iron-catalyzed gasification of brown coal at low temperatures[J]. Energy Fuels,1987,1(1):32−36. doi: 10.1021/ef00001a006
    [22] TOMITA A, TAMAI Y. Hydrogenation of carbons catalyzed by transition metals[J]. J Catal,1972,27(2):293−300. doi: 10.1016/0021-9517(72)90271-0
    [23] HAGA T, OZAKI J I, SUZUKI K, NISHIYAMA Y. Role of MgO and CaO promoters in Ni-catalyzed hydrogenation reactions of CO and carbon[J]. J Catal,1992,134(1):107−117. doi: 10.1016/0021-9517(92)90214-3
    [24] YAN S, ZHANG J S, YAN X Q, PAN D F, REN H, QU X. Catalytic coal hydrogasification by cobalt-calcium catalyst in a pressurized fluidized bed: role of hydropyrolysis and catalysis process[J]. J Anal Appl Pyrol,2018,135:251−259. doi: 10.1016/j.jaap.2018.08.028
    [25] 严帅. 加压流化床煤催化加氢气化的基础研究[D]. 太原: 中国科学院山西煤炭化学研究所, 2019.

    Yan Shuai. Fundamental study on coal catalytic hydrogasification in a pressuried fluidized bed[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2019.
    [26] YUAN S F, QU X, ZHANG R, BI J C. Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal[J]. Fuel,2015,147:133−140. doi: 10.1016/j.fuel.2015.01.004
    [27] YAN S, BI J C, Qu X. The behavior of catalysts in hydrogasification of sub-bituminous coal in pressured fluidized bed[J]. Appl Energy,2017,206:401−412. doi: 10.1016/j.apenergy.2017.08.189
    [28] SILVA I F, MCKEE D W, LOBO L S. A kinetic and in situ XRD study of carbon reactions catalyzed by nickel, cobalt, molybdenum, and their mixtures[J]. J Catal,1997,170(1):54−61. doi: 10.1006/jcat.1997.1723
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  22
  • HTML全文浏览量:  5
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-11
  • 修回日期:  2021-07-02
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回