留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

催化裂化反应对1-己烯叠合反应的影响规律研究

宁鑫 廖明杰 刘砚超 郑家军 李文林 李瑞丰

宁鑫, 廖明杰, 刘砚超, 郑家军, 李文林, 李瑞丰. 催化裂化反应对1-己烯叠合反应的影响规律研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60143-3
引用本文: 宁鑫, 廖明杰, 刘砚超, 郑家军, 李文林, 李瑞丰. 催化裂化反应对1-己烯叠合反应的影响规律研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60143-3
NING Xin, LIAO Ming-jie, LIU Yan-chao, ZHENG Jia-jun, LI Wen-lin, LI Rui-feng. Investigation of the interactions for the 1-hexene oligomerization and the catalytic cracking reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60143-3
Citation: NING Xin, LIAO Ming-jie, LIU Yan-chao, ZHENG Jia-jun, LI Wen-lin, LI Rui-feng. Investigation of the interactions for the 1-hexene oligomerization and the catalytic cracking reaction[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60143-3

催化裂化反应对1-己烯叠合反应的影响规律研究

doi: 10.1016/S1872-5813(21)60143-3
基金项目: 国家自然科学基金(21706177,U19B2003)和山西省科技创新重点团队项目(2014131006)资助
详细信息
    通讯作者:

    E-mail:liwenlin@tyut.edu.cn

  • 中图分类号: O643.32

Investigation of the interactions for the 1-hexene oligomerization and the catalytic cracking reaction

Funds: The project was supported by the National Natural Science Foundation of China (21706177, U19B2003) and Shanxi Science and Technology Innovation Key Team Project (2014131006)
  • 摘要: 分别以1, 3, 5-三异丙苯和正辛烷为不同分子尺寸催化裂解原料,以1-己烯为叠合原料,评估了合成的多级孔ZSM-5分子筛催化剂上催化裂化反应和烯烃叠合反应的耦合机制。模型化合物催化裂解反应结果表明,在合成的多级孔ZSM-5分子筛上不同尺寸分子裂解性能受到抑制,1, 3, 5-TIPB裂解能力下降,正辛烷裂解初始转化率由70%降低到20%。而多级孔ZSM-5分子筛的1-己烯叠合催化活性得到提升,高于工业ZSM-5分子筛,叠合产物以二聚物为主。分子筛中强酸酸量的降低可抑制催化裂化反应的进行,促进C6烯烃低聚为二聚物和三聚物(航空煤油的理想成分)的能力。因此从抑制催化裂化的角度进行催化剂设计,可有效提高催化剂的烯烃叠合反应性能。
  • 图  1  不同分子筛XRD衍射图谱

    Figure  1  Power XRD patterns of the different zeolites

    图  2  不同样品NH3-TPD谱图

    Figure  2  The NH3-TPD curves of the different samples

    图  3  不同样品的Py-FTIR谱图

    Figure  3  The Py-FTIR spectra of the different samples

    图  4  (a) 1, 3, 5-TIPB转化率随反应时间的变化;(b) 催化剂初始活性及产物选择性

    Figure  4  (a) 1, 3, 5-TIPB conversion vs TOS; (b) initial catalyst activity and product selectivity

    图  5  正辛烷转化率随反应时间的变化

    Figure  5  n-Octane conversion with time on stream

    图  6  不同分子筛的1-己烯叠合反应 (a) 转化率vs TOS; (b) TOS = 12 h时1-己烯转化率及产物选择性(T = 250 ℃, P = 40 bar, WHSV = 2.42 h−1)

    Figure  6  1-hexene oligomerization reaction in different zeolites (a): conversion vs TOS; (b): conversion and selectivity at TOS = 12 h (T = 250 ℃, P = 40 bar, WHSV = 2.42 h−1)

    图  7  反应后催化剂的DTG曲线

    Figure  7  DTG curves of the spent catalysts

    表  1  不同分子筛的孔结构参数

    Table  1  Pore structure parameters of the different zeolites

    SamplesSBET
    (m2·g−1)
    Smic
    (m2·g−1)
    Sext
    (m2·g−1)
    Vmic
    (cm3·g−1)
    Vmeso
    (cm3·g−1)
    ZSM-5 (66)302242590.100.04
    ZSM-5 (252)4193171020.130.10
    Commerial ZSM-5442401410.160.05
    下载: 导出CSV

    表  2  不同样品NH3-TPD和Py-FTIR分峰拟合结果

    Table  2  Peak fitting results of NH3-TPD and Py-FTIR for different samples

    SamplesWeak acidStrong acidTotal peaks areaAcidity/(μmol·g−1)[a]
    T/℃peaks areaT/℃peaks areaBrønstedLewis
    ZSM-5 (66) 234 550 346 150 1050 68.53 73.43
    430 350
    ZSM-5 (252) 243 283 348 70 533 44.77 161.07
    425 180
    Commerial ZSM-5 239 1877 343 472 4149 - -
    445 1800
    [a] Brønsted, Lewis acid calculation results at 150 ℃
    下载: 导出CSV
  • [1] KRIVáN E, VALKAI I, HANCSóK J. Investigation of production of motor fuel components on heterogeneous catalyst with oligomerization[J]. Top Catal,2013,56(9-10):831−838. doi: 10.1007/s11244-013-0041-2
    [2] BELLUSSI G, MIZIA F, CALEMMA V, POLLESEL P, MILLINI R. Oligomerization of olefins from light cracking naphtha over zeolite-based catalyst for the production of high quality diesel fuel[J]. Microporous Mesoporous Mat,2012,164:127−134. doi: 10.1016/j.micromeso.2012.07.020
    [3] DE KLERK A. Distillate production by oligomerization of fischer-tropsch olefins over solid phosphoric acid[J]. Energy Fuels,2006,20(2):439−445. doi: 10.1021/ef0503459
    [4] IPATIEFF V N, PINES H. Propylene polymerization: Under high pressure and temperature with and without phosphoric acid[J]. Ind Eng Chem Res,1936,28(6):684−686. doi: 10.1021/ie50318a018
    [5] NICHOLAS C P. Applications of light olefin oligomerization to the production of fuels and chemicals[J]. Appl Catal A Gen,2017,543:82−97. doi: 10.1016/j.apcata.2017.06.011
    [6] MONAMA W, MOHIUDDIN E, THANGARAJ B, MDLELENI M M, KEY D. Oligomerization of lower olefins to fuel range hydrocarbons over texturally enhanced ZSM-5 catalyst[J]. Catal Today,2020,342:167−177. doi: 10.1016/j.cattod.2019.02.061
    [7] RODRíGUEZ R, ESPADA J J, COTO B. Structural characterization of fuels obtained by olefin oligomerization[J]. Energy Fuels,2010,24(1):464−468. doi: 10.1021/ef900802y
    [8] 訾仲岳, 李建青, 刘广波, 吴晋沪. Ni-hzsm-5分子筛用于不同烯烃原料齐聚反应性能的研究[J]. 现代化工,2020,40(9):66−69.

    ZI Zhong-yue, LI Jian-qing, LIU Guang-bo, WU Jin-hu. Study on performance of Ni-HZSM-5 molecular sieve in catalyzing oligomerization of different olefins feedstocks[J]. Mod Chem Ind,2020,40(9):66−69.
    [9] YIN A, WEN C, GUO X, DAI W-L, FAN K. Influence of ni species on the structural evolution of Cu/SiO2 catalyst for the chemoselective hydrogenation of dimethyl oxalate[J]. J Catal,2011,280(1):77−88. doi: 10.1016/j.jcat.2011.03.006
    [10] DE KLERK A, LECKEL D O, PRINSLOO N M. Butene oligomerization by phosphoric acid catalysis: Separating the effects of temperature and catalyst hydration on product selectivity[J]. Ind Eng Chem Res,2006,45(18):6127−6136. doi: 10.1021/ie060207m
    [11] MARTíNEZ A, ARRIBAS M A, CONCEPCIóN P, MOUSSA S. New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene[J]. Appl Catal A Gen,2013,467:509−518. doi: 10.1016/j.apcata.2013.08.021
    [12] KULKARNI A, KUMAR A, GOLDMAN A S, CELIK F E. Selectivity for dimers in pentene oligomerization over acid zeolites[J]. Catal Commun,2016,75:98−102. doi: 10.1016/j.catcom.2015.11.012
    [13] 张素红, 张变玲, 高志贤, 韩怡卓. 晶粒大小对zsm-5分子筛甲醇制低碳烯烃催化性能的影响[J]. 燃料化学学报,2010,38(4):483−489. doi: 10.3969/j.issn.0253-2409.2010.04.018

    ZHANG Su-hong, ZHANG Bian-ling, GAO Zhi-xia, HAN Yi-zhuo. Effect of zeolite crystal size on the catalytic performance of HZSM-5 in the reaction of methanol to light olefins[J]. J Fuel Chem and Techno,2010,38(4):483−489. doi: 10.3969/j.issn.0253-2409.2010.04.018
    [14] KWON M H, YOON J S, LEE M, HWANG D W, KIM Y, PARK M B, CHAE H J. One-pot cascade ethylene oligomerization using Ni/Siral-30 and H-ZSM-5 catalysts[J]. Appl Catal A Gen,2019,572:226−231. doi: 10.1016/j.apcata.2018.12.005
    [15] DíAZ M, EPELDE E, TABERNILLA Z, ATEKA A, AGUAYO A T, BILBAO J. Operating conditions to maximize clean liquid fuels yield by oligomerization of 1-butene on HZSM-5 zeolite catalysts[J]. Energy,2020,207:118317. doi: 10.1016/j.energy.2020.118317
    [16] MURAZA O. Maximizing diesel production through oligomerization: A landmark opportunity for zeolite research[J]. Ind Eng Chem Res,2015,54(3):781−789. doi: 10.1021/ie5041226
    [17] MARTINEZ C, DOSKOCIL E J, CORMA A. Improved THETA-1 for light olefins oligomerization to diesel: Influence of textural and acidic properties[J]. Top Catal,2014,57(6-9):668−682. doi: 10.1007/s11244-013-0224-x
    [18] 李超, 王辉, 朱珊珊, 刘广波, 吴晋沪. 半纤维素改性HZSM-5分子筛上丁烯齐聚反应研究[J]. 燃料化学学报,2017,45(9):1088−1094. doi: 10.3969/j.issn.0253-2409.2017.09.009

    LI Chao, WANG Hui, ZHU Shan-shan, LIU Guang-bo, WU Jin-hu. Research on butene oligomerization reaction over the hemicellulose modified HZSM-5[J]. J Fuel Chem and Techno,2017,45(9):1088−1094. doi: 10.3969/j.issn.0253-2409.2017.09.009
    [19] 訾仲岳, 李冰爽, 葛元征, 刘广波, 李建青, 吴晋沪. 芬顿试剂改性ZSM-5分子筛上丙烯齐聚反应研究[J]. 燃料化学学报,2020,48(8):986−992. doi: 10.3969/j.issn.0253-2409.2020.08.011

    ZI Zhong-yue, LI Bing-shuang, GE Yuan-zheng, LIU Guang-bo, LI Jian-qing, WU Jin-hu. Research on propene oligomerization reaction over the Fenton's reagent modified ZSM-5[J]. J Fuel Chem and Techno,2020,48(8):986−992. doi: 10.3969/j.issn.0253-2409.2020.08.011
    [20] KWON M-H, CHAE H-J, PARK M B. Oligomerization of 1-hexene over designed SBA-15 acid catalysts[J]. J IND ENG CHEM,2018,65:397−405. doi: 10.1016/j.jiec.2018.05.012
    [21] NI Y, SUN A, WU X, HAI G, HU J, LI T, LI G. The preparation of nano-sized h[zn, al]zsm-5 zeolite and its application in the aromatization of methanol[J]. Microporous Mesoporous Mat,2011,143(2-3):435−442. doi: 10.1016/j.micromeso.2011.03.029
    [22] JUNG J S, KIM T J, SEO G. Catalytic cracking of n-octane over zeolites with different pore structures and acidities[J]. Korean J Chem Eng,2004,21(4):777−781. doi: 10.1007/BF02705520
    [23] A. CORMA, A. V. ORCHILLéSB. Current views on the mechanism of catalytic cracking[J]. Microporous and Mesoporous Mat,2000,35-36:21−30. doi: 10.1016/S1387-1811(99)00205-X
    [24] DE KLERK A. Oligomerization of 1-hexene and 1-octene over solid acid catalysts[J]. Ind Eng Chem Res,2005,44(11):3887−3893. doi: 10.1021/ie0487843
    [25] DíAZ-REY M R, PARIS C, MARTíNEZ-FRANCO R, MOLINER M, MARTíNEZ C, CORMA A. Efficient oligomerization of pentene into liquid fuels on nanocrystalline beta zeolites[J]. ACS Catalysis,2017,7(9):6170−6178. doi: 10.1021/acscatal.7b00817
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  6
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-07
  • 修回日期:  2021-07-26
  • 网络出版日期:  2021-08-20

目录

    /

    返回文章
    返回