留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol

LIU Sen GUO Yu-qian SUN Pei-yong ZHANG Sheng-hong YAO Zhi-long

刘森, 国玉倩, 孙培永, 张胜红, 姚志龙. 脂肪酸甲酯和甲醇催化共裂化制备可再生芳烃和烯烃[J]. 燃料化学学报(中英文), 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9
引用本文: 刘森, 国玉倩, 孙培永, 张胜红, 姚志龙. 脂肪酸甲酯和甲醇催化共裂化制备可再生芳烃和烯烃[J]. 燃料化学学报(中英文), 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9
LIU Sen, GUO Yu-qian, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9
Citation: LIU Sen, GUO Yu-qian, SUN Pei-yong, ZHANG Sheng-hong, YAO Zhi-long. Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1911-1921. doi: 10.1016/S1872-5813(21)60146-9

脂肪酸甲酯和甲醇催化共裂化制备可再生芳烃和烯烃

doi: 10.1016/S1872-5813(21)60146-9
详细信息
  • 中图分类号: O643

Production of renewable aromatics and olefins by catalytic co-cracking of fatty acid methyl esters and methanol

Funds: The project was supported by the National Natural Science Foundation of China (21703012) and the Scientific Research Project of Beijing Municipal Education Commission (KM 201910017010)
More Information
  • 摘要: 甘油三酸酯及其衍生物(如脂肪酸甲酯,FAMEs)催化裂化是制备可再生芳烃和烯烃的潜在途径,但该路径严重受限于HZSM-5分子筛催化剂的积炭失活。为调控FAMEs裂化产物分布并减缓催化剂的失活速率,本研究发展了FAMEs和甲醇催化共裂化的反应策略。结果表明,FAMEs和甲醇催化共裂化能够提高烯烃的选择性并降低芳烃的选择性,在原料中甲醇含量为60%时芳烃和烯烃的总选择性高达70.9%。甲醇的引入不仅能够提高烯烃的收率,而且有助于抑制单环芳烃持续脱氢形成多环芳烃,进而减少积炭的生成并延长HZSM-5/Al2O3催化剂的使用寿命。在温度为450 ℃、压力为0.16 MPa、FAMEs空速为4 h−1和反应时长为12 h的条件下,引入与FAMEs等质量的甲醇能够将催化剂的积炭量从17.8%降低为10.1%。此外,FAMEs和甲醇共裂化反应中部分失活的HZSM-5/Al2O3可以通过简单焙烧进行再生,再生催化剂的结构、酸性和反应活性与新鲜催化剂相比无明显改变。
  • FIG. 1160.  FIG. 1160.

    FIG. 1160. 

    Figure  1  Simplified flow diagram of the setup for co-cracking FAMEs and methanol

    Figure  2  SEM images of Al2O3 (a), HZSM-5 (b) and HZSM-5/Al2O3 (c); XRD patterns (d) and N2 adsorption-desorption isotherms (e) of the steam-treated HZSM-5/Al2O3 catalyst

    Figure  3  Effect of steam treatment on the NH3-TPD profiles (a), 29Si MAS NMR spectra (b) and Py-FTIR spectra (c), (d) of HZSM-5/Al2O3 catalyst recorded at 200 and 350 °C, respectively

    Figure  4  Effect of the methanol blending ratios on the co-cracking of FAMEs and CH3OH over HZSM-5/Al2O3 catalysts (reaction conditions: 450 °C, 0.16 MPa, WHSV (FAMEs) = 1 h−1)

    Figure  5  Effect of the methanol blending ratios on the selectivities of (a) aromatics, (b) olefins, and (c) paraffins in the co-cracking of FAMEs and CH3OH over HZSM-5/Al2O3 catalysts (reaction conditions: 450 °C, 0.16 MPa, WHSV (FAMEs) = 1 h−1)

    Figure  6  Proposed reaction pathway for the co-cracking of FAMEs and CH3OH over the HZSM-5/Al2O3 catalyst[5-7, 22-26]

    Figure  7  Variation of FAMEs and CH3OH conversions with time-on-stream for the cracking of (a) FAMEs, (b) CH3OH, and (c) the mixture of FAMEs and CH3OH (conditions: 450 °C, 0.16 MPa, WHSV (FAMEs) = 4 h−1, WHSV (CH3OH) = 4 h−1)

    Figure  8  TG curves of the used HZSM-5/Al2O3 catalysts after reaction for 12 h with different feeds (reaction conditions: 450 °C, 0.16 MPa, WHSV (FAMEs) = 4 h−1, WHSV (CH3OH) = 4 h−1)

    Figure  9  XRD patterns (a), N2 adsorption-desorption isotherms (b), NH3-TPD profiles (c), and 29Si MAS NMR spectra (d) of the fresh, used, and reactivated HZSM-5/Al2O3 catalysts

    Figure  10  Reusability of the HZSM-5/Al2O3 catalyst for the co-cracking of FAMEs and methanol (conditions: 450 °C, 0.16 MPa, WHSV (FAMEs) = 4 h−1, WHSV (CH3OH) = 4 h−1)

    Table  1  Physicochemical properties of HZSM-5/Al2O3 catalysts

    HZSM-5/Al2O3
    (Si/Al)f
    Specific surface area /(m2·g−1)Pore volume /(mL·g−1)
    internalexternaltotalmicroporemesoporetotal
    Calcined23303423450.1630.2710.434
    Steam-treated31261443050.1280.2830.411
    Used32127351620.0600.1800.240
    Reactivated322191133320.1110.3120.423
    下载: 导出CSV

    Table  2  Amount of Brønsted (B) and Lewis (L) acid sites determined by Py-FTIR on HZSM-5/Al2O3 catalysts

    HZSM-5/Al2O3Total acid /(mmol·g−1, 200 °C)Medium & strong acid /(mmol·g−1, 350 °C)
    BLB+LB/LBLB+LB/L
    Fresh0.350.0670.425.30.210.0440.264.8
    Steam-treated0.170.0910.261.80.140.0490.192.8
    Reactivated 0.200.0470.254.20.160.0410.203.9
    下载: 导出CSV
  • [1] CORMA A, CORRESA E, MATHIEU Y, SAUVANAUD L, AL-BOGAMI S, AL-GHRAMI M S, BOURANE A. Crude oil to chemicals: Light olefins from crude oil[J]. Catal Sci Technol,2017,7(1):12−46. doi: 10.1039/C6CY01886F
    [2] MELERO J A, IGLESIAS J, GARCIA A. Biomass as renewable feedstock in standard refinery units. Feasibility, opportunities and challenges[J]. Energy Environ Sci,2012,5(6):7393−7420. doi: 10.1039/c2ee21231e
    [3] DIJKMANS T, PYL S P, REYNIERS M F, ABHARI R, VAN GEEM K M, MARIN G B. Production of bio-ethene and propene: Alternatives for bulk chemicals and polymers[J]. Green Chem,2013,15(11):3064−3076. doi: 10.1039/c3gc41097h
    [4] SUN P Y, LIU S, ZHOU Y P, ZHANG S H, YAO Z L. Production of renewable light olefins from fatty acid methyl esters by hydroprocessing and sequential steam cracking[J]. ACS Sustainable Chem Eng,2018,6(10):13579−13587. doi: 10.1021/acssuschemeng.8b03889
    [5] BENSON T J, HERNANDEZ R, WHITE, M G, FRENCH W T, ALLEY E E, HOLMES W E, THOMPSON B. Heterogeneous cracking of an unsaturated fatty acid and reaction intermediates on HZSM-5 catalyst[J]. Clean Soil Air Water,2008,36(8):652−656. doi: 10.1002/clen.200800050
    [6] CHEN H, WANG Q F, ZHANG X W, WANG L. Hydroconversion of Jatropha oil to alternative fuel over hierarchical ZSM-5[J]. Ind Eng Chem Res,2014,53(51):19916−19924. doi: 10.1021/ie503799t
    [7] SHIMADA I, NAKAMURA Y, OHTA H, SUZUKI K, TAKATSUKA T. Co-processing of saturated and unsaturated triglycerides in catalytic cracking process for hydrocarbon fuel production[J]. J Chem Eng Japan,2018,51(9):778−785. doi: 10.1252/jcej.17we187
    [8] LOK C M, VAN DOORN J, ALMANSA G A. Promoted ZSM-5 catalysts for the production of bio-aromatics, a review[J]. Renewable Sustainable Energy Rev,2019,113:109248. doi: 10.1016/j.rser.2019.109248
    [9] DAI W, YANG L, WANG C, WANG X, WU G, GUAN N, OBENAUS U, HUNGER M, LI L. Effect of n-butanol cofeeding on the methanol to aromatics conversion over Ga-modified nano HZSM-5 and its mechanistic interpretation[J]. ACS Catal,2018,8(2):1352−1362. doi: 10.1021/acscatal.7b03457
    [10] WANG J, ZHONG Z, DING K, DING K, ZHAGN B, DENG A, MIN M, CHEN P, RUAN R. Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics[J]. Energy Conv Manag,2017,147:100−107. doi: 10.1016/j.enconman.2017.05.050
    [11] VU H X, SCHNEIDER M, BENTRUP U, DANG T T, PHAN B M Q, NGUYEN D A, ARMBRUSTER U, MARTIN A. Hierarchical ZSM-5 materials for an enhanced formation of gasoline-range hydrocarbons and light olefins in catalytic cracking of triglyceride-rich biomass[J]. Ind Eng Chem Res,2015,54(6):1773−1782. doi: 10.1021/ie504519q
    [12] RAMOS R, GARCÍA A, BOTAS J A, SERRANO D P. Enhanced production of aromatic hydrocarbons by rapeseed oil conversion over Ga and Zn modified ZSM-5 catalysts[J]. Ind Eng Chem Res,2016,55(50):12723−12732. doi: 10.1021/acs.iecr.6b03050
    [13] WANG S, CAI Q, CHEN J, ZHANG L, WANG X, YU C. Green aromatic hydrocarbon production from cocracking of a bio-oil model compound mixture and ethanol over Ga2O3/HZSM-5[J]. Ind Eng Chem Res,2014,53(36):13935−13944. doi: 10.1021/ie5024029
    [14] ZHENG A, ZHAO Z, CHANG S, HUANG Z, ZHAO K, WU H, WANG X, HE F, LI H. Maximum synergistic effect in the coupling conversion of bio-derived furans and methanol over ZSM-5 for enhancing aromatic production[J]. Green Chem,2014,16(5):2580−2586. doi: 10.1039/c3gc42251h
    [15] CAI Q, XU J, ZHANG S. Upgrading of bio-oil aqueous fraction by dual-stage hydrotreating-cocracking with methanol[J]. ACS Sustainable Chem Eng,2017,5(7):6329−6342. doi: 10.1021/acssuschemeng.7b01505
    [16] MENTZEL U V, HOLM M. S. Utilization of biomass: Conversion of model compounds to hydrocarbons over zeolite H-ZSM-5[J]. Appl Catal A: Gen,2011,396(1):59−67.
    [17] ZHANG H, CHENG Y T, VISPUTE T P, XIAO R, HUBER G W. Catalytic conversion of biomass-derived feedstocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio[J]. Energy Environ Sci,2011,4(6):2297−2307. doi: 10.1039/c1ee01230d
    [18] EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−354. doi: 10.1006/jcat.1993.1145
    [19] RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, et al. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182. doi: 10.1016/j.apcata.2007.06.003
    [20] WAN Z, WU W, CHEN W, YANG H, ZHANG D. Direct synthesis of hierarchical ZSM-5 zeolite and its performance in catalyzing methanol to gasoline conversion[J]. Ind Eng Chem Res,2014,53(50):19471−19478. doi: 10.1021/ie5036308
    [21] KLINOWSKI J. Solid-state NMR studies of molecular sieve catalysts[J]. Chem Rev,1991,91(7):1459−1479. doi: 10.1021/cr00007a010
    [22] CAI Wen-jing, YAN Hao, FENG Xiang, LIU Yi-bin, YANG Chao-he. Product distribution in catalytic cracking of fatty acid methyl esters with different carbon chain lengths[J]. CIESC J,2017,68(5):2057−2065. )
    [23] BJØRGEN M, SVELLE S, JOENSEN F, NERLOV J, KOLBOE S, BONINO F, PALUMBO L, BORDIGA S, OLSBYE U. Conversion of methanol to hydrocarbons over zeolite H-ZSM-5: On the origin of the olefinic species[J]. J Catal,2007,249(2):195−207. doi: 10.1016/j.jcat.2007.04.006
    [24] ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic- and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal,2013,303:135−140. doi: 10.1016/j.jcat.2013.03.021
    [25] SUN X, MUELLER S, LIU Y, SHI H, HALLER G L, SANCHEZ-SANCHEZ M, VAN VEEN A C, LERCHER J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5[J]. J Catal,2014,317:185−197. doi: 10.1016/j.jcat.2014.06.017
    [26] YARULINA I, CHOWDHURY A D, MEIRER F, WECKHUYSEN B M, GASCON J. Recent trends and fundamental insights in the methanol-to-hydrocarbons process[J]. Nat Catal,2018,1(6):398−411. doi: 10.1038/s41929-018-0078-5
    [27] MIER D, AGUAYO A T, GAYUBO A G, OLAZER M, BILBAO J. Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst[J]. Chem Eng J,2010,160(2):760−769. doi: 10.1016/j.cej.2010.04.016
    [28] AKAH A, WILLIAMS J, GHRAMI M. An overview of light olefins production via steam enhanced catalytic cracking[J]. Catal Surv Asia,2019,23:265−276. doi: 10.1007/s10563-019-09280-6
    [29] LUO M, FU Y, HU B, WANG D, WANG B, MAO G. Water inhibits the conversion and coking of olefins on SAPO-34[J]. Appl Catal A: Gen,2019,570:209−217. doi: 10.1016/j.apcata.2018.11.017
    [30] MARTINEZ-ESPIN J S, DE WISPELAERE K, JANSSENS T V W, SVELLE S, LILLERUD K P, BEATO P, VAN SPEYBROECK V, OLSBYE U. Hydrogen transfer versus methylation: On the genesis of aromatics formation in the nethanol-to-hydrocarbons reaction over H-ZSM-5[J]. ACS Catal,2017,7(9):5773−5780. doi: 10.1021/acscatal.7b01643
    [31] GROTEN W A, WOJCIECHOWSKI B W, HUNTER B K. Coke and deactivation II. Formation of coke and minor products in the catalytic cracking of n-hexene on USHY zeolite[J]. J Catal,1990,125:311−324. doi: 10.1016/0021-9517(90)90306-5
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  517
  • HTML全文浏览量:  135
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-05-07
  • 网络出版日期:  2021-08-25
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回