留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Influence of water leaching on alkali-induced slagging properties of biomass straw

LIU Yan-jing YAN Ting-gui AN Yan ZHANG Wei DONG Yang

刘延静, 颜婷珪, 安燕, 张为, 董阳. 水浸出对生物质秸秆碱金属-诱导结渣特性的影响[J]. 燃料化学学报(中英文), 2021, 49(12): 1839-1850. doi: 10.1016/S1872-5813(21)60147-0
引用本文: 刘延静, 颜婷珪, 安燕, 张为, 董阳. 水浸出对生物质秸秆碱金属-诱导结渣特性的影响[J]. 燃料化学学报(中英文), 2021, 49(12): 1839-1850. doi: 10.1016/S1872-5813(21)60147-0
LIU Yan-jing, YAN Ting-gui, AN Yan, ZHANG Wei, DONG Yang. Influence of water leaching on alkali-induced slagging properties of biomass straw[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1839-1850. doi: 10.1016/S1872-5813(21)60147-0
Citation: LIU Yan-jing, YAN Ting-gui, AN Yan, ZHANG Wei, DONG Yang. Influence of water leaching on alkali-induced slagging properties of biomass straw[J]. Journal of Fuel Chemistry and Technology, 2021, 49(12): 1839-1850. doi: 10.1016/S1872-5813(21)60147-0

水浸出对生物质秸秆碱金属-诱导结渣特性的影响

doi: 10.1016/S1872-5813(21)60147-0
详细信息
  • 中图分类号: TK6

Influence of water leaching on alkali-induced slagging properties of biomass straw

Funds: The project was supported by the National Natural Science Foundation of China (21808045), the Natural Science Foundation of Guizhou Province (Guizhou Science and Technology Platform Talents [2018]5781, [2019]1230, [2019]1066)
More Information
  • 摘要: 由碱金属矿物引起的沉积、结渣问题是在燃烧和气化装置中利用生物质燃料的主要障碍之一。论文主要研究了水浸出对玉米秸秆和水稻秸秆碱诱导结渣特性的影响。通过比较水浸前后生物质低温灰的成分,探究了生物质秸秆中碱金属的原始矿物存在形式。结合高温生物质灰的矿物晶体分析和消解样品的化学成分,分析了生物质秸秆在不同温度下碱金属化合物的释放和转化规律。结果表明,玉米和稻草中的钾主要以KNO3、KClO4、K2SO4和KAlSi3O8的形式存在,其中KNO3、K2SO4和KClO4大部分可通过水浸去除。水浸后生物质灰的熔融温度升高,尤其是碱性化合物以含钾化合物为主的典型样品—稻草灰。原玉米和稻草中钾含量随温度降低的原因是含钾矿物质在25−1000 ℃时分解逸出。水浸后玉米和稻草在400−800 ℃钾的释放量显著减少,但在800 ℃以上钾含量仍会下降。玉米中镁含量随温度升高而降低,是由于氧化镁在碳还原作用下挥发所致。对于水浸后碱金属含量高的燃料,残留的碱金属仍会逸出,尤其是在800 ℃以上容易发生碱金属引发的沉积或结渣。
  • FIG. 1149.  FIG. 1149.

    FIG. 1149. 

    Figure  1  AFTs of biomass straw ash

    Figure  2  Changes of metal concentration in straw ash before and after water leaching

    Figure  3  XRD patterns of low temperature biomass ash (a): corn straw; (b): rice straw

    Figure  4  TG and DTG diagrams of pretreated and untreated straw

    (a): corn straw TG; (b): corn straw DTG; (c): rice straw TG; (d): rice straw DTG

    Figure  5  Changes in the AAEMs concentrations during biomass pyrolysis at different temperatures

    (a): corn straw; (b): washed corn straw; (c): rice straw; (d): washed rice straw

    Figure  6  K concentration changes at different temperatures

    (a): corn straw; (b): washed corn straw; (c): rice straw; (d): washed rice straw

    Figure  7  XRD of biomass at different combustion temperatures

    (a): corn straw; (b): washed corn straw; (c): rice straw; (d): washed rice straw

    Table  1  Proximate analysis and ultimate analysis of biomass straw

    Sample
    Proximate analysis wad/%Ultimate analysis wdaf/%
    MVA FCCHO*NSt
    Corn straw10.3469.164.6715.8342.935.850.670.470.13
    Rice straw9.7261.4414.0814.7637.125.3156.990.520.06
    *: by difference
    下载: 导出CSV

    Table  2  Ash composition of straw ash

    SampleSiO2K2OCaOMgONa2OAl2O3Fe2O3P2O5TiO2SO3
    Corn straw w/%(mass)43.7427.7210.2911.670.140.430.302.290.032.68
    Rice straw w/%(mass)62.6023.064.932.930.180.450.381.350.030.45
    下载: 导出CSV
  • [1] ZHANG Z M, WANG G H, GAO H. Research on China's renewable energy development strategy and policy[J]. Econ Res Ref,2004,(84):26−32.
    [2] BASS A E, GRGAARD B. The long-term energy transition: Drivers, outcomes, and the role of the multinational enterprise[J]. J Int Bus Stud,2021,1−17.
    [3] ZHANG W W, HUANG S, WU S Y, WU Y Q, GAO J S. Ash fusion characteristics and gasification activity during biomasses co-gasification process[J]. Renewable Energy,2020,147:1584−1594. doi: 10.1016/j.renene.2019.09.058
    [4] HUBBLE A H, GOLDFARB J L. Synergistic effects of biomass building blocks on pyrolysis gas and bio-oil formation[J]. J Anal Appl Pyrolysis,2021,156:105100.
    [5] JENSEN P A, STENHOLM M, HALD P. Deposition investigation in straw fired boilers[J]. Energy Fuels,1997,11(5):1048−1055.
    [6] ZHAO J, LI B, WEI X L, ZHANG Y F, LI T. Slagging characteristics caused by alkali and alkaline earth metals during municipal solid waste and sewage sludge co-incineration[J]. Energy,2020,202:117773.
    [7] YAO X, ZHOU H, XU K, XU Q, LI L. Investigation on the fusion characterization and melting kinetics of ashes from co-firing of anthracite and pine sawdust[J]. Renewable Energy,2020,145:835−846. doi: 10.1016/j.renene.2019.06.087
    [8] YAO X, ZHENG Y, ZHOU H, XU K, XU Q, LI L. Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite[J]. Renewable Energy,2020,147:2309−2320. doi: 10.1016/j.renene.2019.10.047
    [9] HE C, ILYUSHECHKIN A, BAI J, HLA S S, KONG L-X, LI W. Viscosity and crystallisation behaviour of coal ash slag from the primary phase of anorthite[J]. Fuel Process Technol,2021,213:106680.
    [10] MA X W, LI F H, MA M J, FANG Y T. Fusion characteristics of blended ash from Changzhicoal and biomass[J]. J Fuel Chem Technol,2018,46(2):129−137. doi: 10.1016/S1872-5813(18)30007-0
    [11] NIU Y Q, TAN H Z, HUI S E. Ash-related issues during biomass combustion: Alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures[J]. Prog Energy Combust Sci,2016,52:1−61.
    [12] ZHANG Y F, XIE X Y, ZHAO J, WEI X L. The alkali metal occurrence characteristics and its release and conversion during wheat straw pyrolysis[J]. Renewable Energy,2020,151:255−262. doi: 10.1016/j.renene.2019.11.013
    [13] SHEN Z, HUA X, LIANG Q, XU J, HAN D, LIU H. Reaction, crystallization and element migration in coal slag melt during isothermal molten process[J]. Fuel,2017,191:221−229. doi: 10.1016/j.fuel.2016.11.048
    [14] ZHOU B, DONG K, DING J, CEN K F. Research on the slagging characteristics of easy to slagging coal in a pilot scale furnace[J]. Fuel,2013,109:608−615. doi: 10.1016/j.fuel.2013.03.044
    [15] WANG Y B, TAN H Z, WANG X B, CAO R J, WEI B. The condensation and thermodynamic characteristics of alkali compound vapors on wall during wheat straw combustion[J]. Fuel,2017,187:33−42.
    [16] WEI X L, SCHNELL U, HEIN K r G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation[J]. Fuel,2005,84(7/8):841−848. doi: 10.1016/j.fuel.2004.11.022
    [17] ZHAO Y, TAN L, CHENG G S, KONG Y, DONG C Q. The migration characteristics of sodium during biomass combustion[J]. Adv Mater Res,2013,(805/806):251−254.
    [18] CHEN J, FU P f, ZHANG B, ZHOU H C. Deposition and sintering behavior of alkali metals and chlorine in biomass combustion[J]. J Eng Therm,2014,35(7):1453−1456.
    [19] LIU Y Z, HE Y, WANG Z H, XIA J, WAN K D, WHIDDON R, CEN K F. Characteristics of alkali species release from a burning coal/biomass blend[J]. Appl Energy,2018,215:523−531. doi: 10.1016/j.apenergy.2018.02.015
    [20] SADDAWI A, JONES J M, WILLIAMS A, LE COEUR C. Commodity fuels from biomass through pretreatment and torrefaction: Effects of mineral content on torrefied fuel characteristics and quality[J]. Energy Fuels,2012,26(11):6466−6474.
    [21] MLONKA-MĘDRALA A, MAGDZIARZ A, GAJEK M, NOWIŃSKA K, NOWAK W. Alkali metals association in biomass and their impact on ash melting behaviour[J]. Fuel,2020,261:116421. doi: 10.1016/j.fuel.2019.116421
    [22] XIN F. Experimental study on the influence of pretreatment on the pyrolysis characteristics of biomass[D]. Wuhan: Huazhong University of Science and Technology, 2006.
    [23] DENG L, ZHANG T, CHE D. Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass[J]. Fuel Process Technol,2013,106:712−720. doi: 10.1016/j.fuproc.2012.10.006
    [24] HUANG J, CUI J Y, GAO A J, CHANG Y, FEI D Y, SHEN C, ZHANG Y M. Effects of Organic Acid Washing Pretreatment on Pyrolysis Process and Products of Corn Straw[J]. Guangdong Chem Ind,2018,45(15):14−15.
    [25] JENKINS B M, BAKKER R R, WEI J B. On the properties of washed straw[J]. Biomass Bioenergy,1996,10(4):177−200. doi: 10.1016/0961-9534(95)00058-5
    [26] JENKINS B M, BAXTER L L, MILESJ R T R, MILES T R. Combustion properties of biomass[J]. Fuel Process Technol,1988,54(1/3):17−46.
    [27] DENG L, ZHANG T, LIU Y H, LIU Y H, CHE D F. Effect of washing on fuel properties and combustion characteristic of biomass[J]. J Eng Therm,2010,31(07):1239−1242.
    [28] JIN X, LONG J M, GUO J, LI Y S, DENG L, CHE D F. Effect of water washing on ash deposition behaviors during biomass combustion[J]. J Eng Therm,2018,39(10):2339−2345.
    [29] DENG L, JIN X, LONG J M, CHE D F. Ash deposition behaviors during combustion of raw and water washed biomass fuels[J]. J Energy Inst,2019,92(4):959−970. doi: 10.1016/j.joei.2018.07.009
    [30] LIU J S. Analysis on the distribution and utilization status of straw resources in my country[D]. Beijing: China Agricultural University, 2005.
    [31] FRAZER F W, BELCHER C B. Quantitative determination of the mineral-matter content of coal by a radiofrequency-oxidation technique[J]. Fuel,1973,52(1):41−46. doi: 10.1016/0016-2361(73)90010-0
    [32] GRIGORE M, SAKUROVS R, FRENCH D. Influence of mineral matter on coke reactivity with carbon dioxide[J]. ISIJ Int,2006,46(4):503−512. doi: 10.2355/isijinternational.46.503
    [33] WANG Q H, LUO Z Y, LI X M, JIE T. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. J China Coal Soc,2010,35(6):138−143.
    [34] ZHANG L, LV Q Z. Key factors affecting fusion temperature of coal ash[J]. Dev Innovation Mach Electr Prod,2010,23(2):181−183.
    [35] KNUDSEN J N, JENSEN P A, LIN W, FRANDSEN F J, DAM-JOHANSEN K. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy Fuels,2004,18(3):810−819. doi: 10.1021/ef034085b
    [36] ZHOU J, LIU Q, ZHONG W Q, YU Z W. Migration and transformation law of potassium in the combustion of biomass blended coal[J]. J Fuel Chem Technol,2020,48(8):929−936. doi: 10.1016/S1872-5813(20)30065-7
    [37] VASSILEV S V, BAXTER D, VASSILEVA C G. An overview of the behaviour of biomass during combustion: Part I. Phase-mineral transformations of organic and inorganic matter[J]. Fuel,2013,112:391−449. doi: 10.1016/j.fuel.2013.05.043
    [38] XUE Z Y, ZHONG Z P, ZHANG B, ZHANG J, XIE X W. Potassium transfer characteristics during co-combustion of rice straw and coal[J]. Appl Therm Eng,2017,124:1418−1424. doi: 10.1016/j.applthermaleng.2017.06.116
    [39] WU R L. Evaporization of MgO in BF[J]. Iron Steel,1994,29(4):10−14.
    [40] SONG G L, YANG S B, SONG W J, QI X B. Release and transformation behaviors of sodium during combustion of high alkali residual carbon[J]. Appl Therm Eng,2017,122:285−296. doi: 10.1016/j.applthermaleng.2017.04.139
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  82
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-06
  • 修回日期:  2021-06-08
  • 网络出版日期:  2021-08-31
  • 刊出日期:  2021-12-29

目录

    /

    返回文章
    返回