留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CO在不同氧缺陷Cu1/CeO2(110)表面的吸附:DFT + U

张佳松 王辉 王宁 孙健伟 杨建成

张佳松, 王辉, 王宁, 孙健伟, 杨建成. CO在不同氧缺陷Cu1/CeO2(110)表面的吸附:DFT + U[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60149-4
引用本文: 张佳松, 王辉, 王宁, 孙健伟, 杨建成. CO在不同氧缺陷Cu1/CeO2(110)表面的吸附:DFT + U[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60149-4
ZHANG Jia-song, WANG Hui, WANG Ning, SUN Jian-wei, YANG Jian-cheng. Adsorption of CO on Cu1/CeO2 (110) surface with different oxygen defects: DFT + U[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60149-4
Citation: ZHANG Jia-song, WANG Hui, WANG Ning, SUN Jian-wei, YANG Jian-cheng. Adsorption of CO on Cu1/CeO2 (110) surface with different oxygen defects: DFT + U[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60149-4

CO在不同氧缺陷Cu1/CeO2(110)表面的吸附:DFT + U

doi: 10.1016/S1872-5813(21)60149-4
基金项目: 国家自然科学基金(51676058)资助
详细信息
    作者简介:

    张佳松:18222158863@163.com

    通讯作者:

    E-mail: wanghui_hb@hit.edu.cn

  • 中图分类号: TQ 534.9

Adsorption of CO on Cu1/CeO2 (110) surface with different oxygen defects: DFT + U

Funds: The project was supported by the National Natural Science Foundation of China (51676058)
  • 摘要: 吸附过程是SCR脱硝的重要步骤,研究CO在催化剂表面的吸附特性对理解催化剂的催化机理具有重要意义。本文基于量子化学的密度泛函理论(DFT)研究了CO在理想和氧缺陷Cu1/CeO2(110)表面上的吸附,并且对CO分子在催化剂表面不同位点的吸附特性进行了计算和分析。结果表明,Cu掺杂可以显著提高CO在催化剂表面的吸附性能,顶位是CO最稳定的吸附位,CO在空穴位上的吸附能力很弱。与理想表面相比,线性缺陷的构造可以进一步提高CO在催化剂表面的吸附性能。对吸附构型PDOS的分析表明,大量的轨道杂化可能是CO在Cu1/CeO2(110)表面吸附性能较强的原因。
  • 图  1  CO在CeO2(110)表面的吸附

    Figure  1  Adsorption of CO on CeO2(110) Surface

    (a): Ce atom top position(C-down); (b): Ce atom top position(O-down); (c): O atom top position(C-down); (d): O atom top position(O-down); (e): bridge site(C-down); (f): bridge site(O-down); (g): empty acupoints(C-down); (h): empty acupoints(O-down)

    图  2  铜掺杂结构

    Figure  2  Copper doped structure

    (a): front view; (b): top view (pink: Cu atom; red: O atom; white: Ce atom)

    图  3  CO在无缺陷表面的吸附(C-down)

    Figure  3  Adsorption of CO on defect-free surface(C-down)

    (A: top site; B: bridge site; C: empty acupoints; G-O: Geometry Optimization; the same below)

    图  4  CO在无缺陷表面的吸附(O-down)

    Figure  4  Adsorption of CO on defect-free surface(O-down)

    图  5  CeO2(110)表面不同氧缺陷类型

    Figure  5  Different oxygen defect types on CeO2(110) surface

    (a): single oxygen defect; (b): linear oxygen defect; (c): triangular oxygen defect

    图  6  CO在氧缺陷表面的吸附

    Figure  6  Adsorption of CO on oxygen defect surface

    (a): adsorption of CO on single oxygen defect surface; (b): adsorption of CO on linear oxygen defect surface; (c): adsorption of CO on triangular oxygen defect surface

    图  7  CO吸附在无缺陷表面上时C与Cu的PDOS

    Figure  7  PDOS of C and Cu with CO adsorbed on defect free surface

    图  8  CO吸附在单个氧原子缺陷表面上时C与Cu的PDOS

    Figure  8  PDOS of C and Cu when CO adsorbed on the surface of single oxygen atom defect

    图  9  CO吸附在线性氧缺陷表面上时C与Cu的PDOS

    Figure  9  PDOS of C and Cu when CO adsorbs on linear oxygen defect surface

    图  10  CO吸附在三角形氧缺陷表面上时C与Cu的PDOS

    Figure  10  PDOS of C and Cu when CO adsorbs on triangular oxygen defect surface

    表  1  无缺陷表面吸附数据(C-down)

    Table  1  Surface adsorption data without defects(C-down)

    Adsorption configurationConfigurationsRCO-surface/nmDC-Cu/nmQCO/e
    Defect-free surface1A0.1160.1790.173
    1B0.1160.1780.173
    1C0.1140.3350.050
    下载: 导出CSV

    表  2  无缺陷表面吸附数据(O-down)

    Table  2  Surface adsorption data without defects(O-down)

    Adsorption configurationConfigurationsRCO-surface/nmDC-Cu/nmQCO/e
    Defect-free surface1A*0.1140.307−0.003
    1B*0.1140.316−0.002
    1C*0.1140.3760.009
    下载: 导出CSV

    表  3  不同缺陷表面吸附数据

    Table  3  Surface adsorption data of different defects

    Adsorption configurationConfigurationsRCO-surface/nmDC-Cu/nmQCO/e
    Single oxygen defect surface2A0.1160.1780.172
    2B0.1160.1780.174
    2C0.1140.3370.033
    Linear oxygen defect surface3A0.1170.1790.057
    3B0.1190.1790.099
    3C0.1280.394−0.718
    Triangular oxygen defect surface4A0.1190.1800.144
    4B0.1190.1800.141
    4C0.1170.391−0.080
    下载: 导出CSV
  • [1] CHENG X X, SU D X, WANG Z Q, MA C Y, WANG M X. Catalytic reduction of nitrogen oxide by carbon monoxide, methane and hydrogen over transition metals supported on BEA zeolites[J]. Int J Hydrog Energy,2018,43(48):21969−21981. doi: 10.1016/j.ijhydene.2018.09.206
    [2] XU Z C, LI Y R, LIN Y T, ZHU T Y. A review of the catalysts used in the reduction of NO by CO for gas purification[J]. Environ Sci Pollut Res,2020,27(4):6723−6748.
    [3] 谈冠希, 迟姚玲, 李双, 易玉峰, 靳广洲. 锰锆复合氧化物CO催化还原NO性能研究[J]. 燃料化学学报,2019,47(10):1258−1264. doi: 10.3969/j.issn.0253-2409.2019.10.013

    TAN Guan-xi, CHI Yao-ling, LI Shuang, YI Yu-feng, JIN Guang-zhou. Study on catalytic reduction of NO by manganese zirconium complex oxide CO[J]. J Fuel Chem Technol,2019,47(10):1258−1264. doi: 10.3969/j.issn.0253-2409.2019.10.013
    [4] ZHOU Y, CHEN A, NING J, SHEN W J. Electronic and geometric structure of the copper-ceria interface on Cu/CeO2 catalysts[J]. Chinese J Catal,2020,41(6):928−937. doi: 10.1016/S1872-2067(20)63540-9
    [5] ZHOU L, LI X X, YAO Z, CHEN Z W, HONG M, ZHU R S, LIANG Y Y, ZHAO J. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation[J]. Sci Rep,2016,6(1):23900. doi: 10.1038/srep23900
    [6] 戴晓霞, 蒋威宇, 王望龙, 翁小乐, 尚媛, 薛烨辉, 吴忠标. 超临界水热合成过渡金属改性铈基催化剂应用于CO-SCR脱硝研究[J]. 催化学报,2018,39(4):728−735. doi: 10.1016/S1872-2067(17)63008-0

    DAI Xiao-xia, JIANG Wei-yu, WANG Wang-long, WENG Xiao-le, SHANG Yuan, XUE Ye-hui, WU Zhong-biao. Study on the application of transition metal modified cerium based catalyst for CO-SCR denitrification by supercritical hydrothermal synthesis[J]. Chinese J Catal,2018,39(4):728−735. doi: 10.1016/S1872-2067(17)63008-0
    [7] GAMARRA D, AL Cámara, MONTE M, RASMUSSEN S B, CHINCHILLA L E, HUNGRÍA A B, MUNUERA G, GYORFFY N, SCHAY Z, VC Corberán, CONESA J C, AM Arias. Preferential oxidation of CO in excess H2 over CuO/CeO2 catalysts: Characterization and performance as a function of the exposed face present in the CeO2 support[J]. Appl Catal B,2013,130:224−238.
    [8] WONG K, ZENG Q, YU A. Interfacial synergistic effect of the Cu monomer or CuO dimer modified CeO2(111) catalyst for CO oxidation[J]. Chem Eng J,2011,174(1):408−412. doi: 10.1016/j.cej.2011.09.020
    [9] CHEN A, YU X, ZHOU Y, MIAO S, LI Y, Kuld S, SEHESTED J, LIU J Y, AOKI T, HONG S, CAMELLONE M F, FABRIS S, NING J, JIN C C, YANG C W, NEFEDOV A, WÖLL C, WANG Y M, SHEN W J. Structure of the catalytically active copper–ceria interfacial perimeter[J]. Nat Catal,2019,2:334−341. doi: 10.1038/s41929-019-0226-6
    [10] CUI L X, TANG Y H, ZHANG H, HECTOR LG Jr, OUYANG C Y, SHI S Q, LI H, CHEN L Q. First-principles investigation of transition metal atom M (M = Cu, Ag, Au) adsorption on CeO2(110)[J]. Phys Chem Chem Phys,2012,14(6):1923−33. doi: 10.1039/c2cp22720g
    [11] SONG Y L, YIN L L, ZHANG J, HU P, GONG X Q, LU G Z. A DFT + U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies[J]. Surf Sci,2013,618:140−147. doi: 10.1016/j.susc.2013.09.001
    [12] NILIUS N. Oxygen Vacancies in the CeO2(111) Surface and Their Relevance for Adsorption Processes-ScienceDirect[M]. Encyclopedia of Interfacial Chemistry, Oxford: Elsevier, 2018: 182–188.
    [13] JIA H L, REN B G, LI M, LIU X J, WU J X, TAN X. Structure and electronic properties of Si-doped CeO2(111) surface by the first principle method[J]. Solid State Commun,2018,277:45−9. doi: 10.1016/j.ssc.2018.04.008
    [14] REN D D, GUI K T. Study of the adsorption of NH3 and NOx on the nano-γFe2O3(001) surface with density functional theory[J]. Appl Surf Sci,2019,487:171−179. doi: 10.1016/j.apsusc.2019.04.250
    [15] CHANSAI S, BURCH R, HARDACRE C, NORTON D, BAO X Y, LEWIS L. Investigating the promotional effect of methanol on the low temperature SCR reaction on Ag/Al2O3[J]. Appl Catal B,2014,160-161:356−64. doi: 10.1016/j.apcatb.2014.05.040
    [16] DELLEY B. From molecules to solids with the DMol3 approach[J]. J. Chem. Phys,2000,113:7756. doi: 10.1063/1.1316015
    [17] PERDEW J P, BURKE K, ERNZERHOF M. Generalized Gradient Approximation Made Simple[J]. Phys Rev Lett,1998,77(18):3865−3868.
    [18] ANDERSSON D A, SIMAK S I, JOHANSSON B, ABRIKOSOV I A, SKORODUMOVA N V. Modeling of Ce2, Ce2O3, and CeO2−x in the LDA + U formalism[J]. Phys. rev. b,2007,75(3):035109. doi: 10.1103/PhysRevB.75.035109
    [19] 贾慧灵, 李梅, 李雪燕, 刘学杰. DFT + U法研究外压下CeO2力学性质和电子结构[J]. 稀有金属,2016,40(6):600−605.

    JIA Hui-ling, LI Mei, LI Xue-yan, LIU Xue-jie. Study on mechanical properties and electronic structure of CeO2 under external pressure by DFT + U method[J]. Chinese J Rare Metals,2016,40(6):600−605.
    [20] YANG C, ZHAO Z Y, LIU Q J. Theoretical study of CO oxidation on Au1/Co3O4 (110) single atom catalyst using density functional theory calculations[J]. Mater Sci Semicond Process,2020,123:105578.
    [21] YANG X F, WANG A, QIAO B, LI J, ZHANG T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis[J]. Acc Chem Res,2013,46(8):1740. doi: 10.1021/ar300361m
    [22] LUCCI F R, LIU J L, MARCINKOWSKI M D, YANG M, ALLARD L F, STEPHANOPOULOS M F, SYKES E C H. Selective hydrogenation of 1, 3-butadiene on platinum-copper alloys at the single-atom limit[J]. Nat Commun,2015,6:8550. doi: 10.1038/ncomms9550
    [23] 孟宇, 刘小艳, 白苗苗, 王英, 马亚军, 曹直. Cu单原子修饰对Fe(111)表面CO吸附性能及电子性质调变的第一性原理研究[J]. 燃料化学学报,2020,48(4):440−447. doi: 10.3969/j.issn.0253-2409.2020.04.007

    MENG Yu, LIU Xiao-yan, BAI Miao-miao, WANG Ying, MA Ya-jun, CAO Zhi. First-principles study on the CO adsorption properties and electronic properties of Fe (111) surface modified by Cu single atom[J]. Journal of Fuel Chemistry and Technology,2020,48(4):440−447. doi: 10.3969/j.issn.0253-2409.2020.04.007
    [24] YANG Z X, YU X H, LU Z S, LI S F, HERMANSSON K. Oxygen vacancy pairs on CeO2(110): A DFT + U study[J]. Phys Lett A,2009,373(31):2786−2792. doi: 10.1016/j.physleta.2009.05.055
    [25] 张洁, 龚学庆, 卢冠忠. CeO2(110)负载Au纳米颗粒催化CO + NOx反应的DFT + U研究[J]. 催化学报,2014,35(8):1305−1317. doi: 10.1016/S1872-2067(14)60168-6

    ZHANG Jie, GONG Xue-qing, LU Guan-zhong. DFT + U study of the CO + NOx reaction on a CeO2(110)-supported Au nanoparticle[J]. Chinese Journal of Catalysis,2014,35(8):1305−1317. doi: 10.1016/S1872-2067(14)60168-6
    [26] 袁金焕, 滕波涛, 赵越, 赵云, 罗孟飞. 贵金属原子在CeO2(111)表面吸附的密度泛函理论研究[J]. 燃料化学学报,2012,40(1):124−128. doi: 10.3969/j.issn.0253-2409.2012.01.020

    YUAN Jin-huan, TENG Bo-tao, ZHAO Yue, ZHAO Yun, LUO Meng-fei. Density functional theory study on adsorption of noble metal atoms on CeO2 (111) surface[J]. J Fuel Chem Technol,2012,40(1):124−128. doi: 10.3969/j.issn.0253-2409.2012.01.020
    [27] YANG Y J, LIU J, ZHANG B K, LIU F. Density functional theory study on the heterogeneous reaction between Hg0 and HCl over spinel-type MnFe2O4[J]. Chem Eng J,2017,308:897−903. doi: 10.1016/j.cej.2016.09.128
    [28] CHEN L J, TANG Y H, CUI L X, OUYANG C Y, SHI S Q. Charge transfer and formation of Ce3+ upon adsorption of metal atom M (M = Cu, Ag, Au) on CeO2 (100) surface[J]. J Power Sources,2013,234(15):69−81.
    [29] KIRFEL A, EICHHORN K. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O[J]. Acta Cryst,1990,46(4):271−284. doi: 10.1107/S0108767389012596
    [30] SONG Z J, WANG B, YU J, MA C, ZHOU C S, CHEN T, YAN Q Q, WANG K, SUN L S. Density functional study on the heterogeneous oxidation of NO over α-Fe2O3 catalyst by H2O2: Effect of oxygen vacancy[J]. Appl Surf Sci,2017,413:292−301. doi: 10.1016/j.apsusc.2017.04.011
    [31] HURTADO A O, AEZ R, SIERRAALTA A. DFT + U study of the electronic structure changes of WO3 monoclinic and hexagonal surfaces upon Cu, Ag, and Au adsorption. Applications for CO adsorption[J]. Surf Sci,2021,121907.
    [32] LU W, CUI S, GUO H. Study the low-temperature SCR property of M-doped (M=Ni, Cr, Co, Se, Sn) MnO2 (100) through density functional theory (DFT): Improvement of sulfur poisoning resistance[J]. Mol Catal,2018,459:31−37. doi: 10.1016/j.mcat.2018.08.020
    [33] MUKHERJEE D, REDDY B M. Noble metal-free CeO2-based mixed oxides for CO and soot oxidation[J]. Catal Today,2017,309:227−235.
    [34] ESCH F, FABRIS S, ZHOU L, MONTINI T, AFRICH C, FORNASIERO P, COMELLI G, COMELLI G. Electron Localization Determines Defect Formation on Ceria Substrates[J]. Sci,2005,309(5735):752−755. doi: 10.1126/science.1111568
    [35] MA J L, YE F, OU D R, LI L L, MORI T. Structures of Defect Clusters on Ceria {111} Surface[J]. J Phys Chem C,2012,116(49):25777−25782. doi: 10.1021/jp306699r
    [36] 韩仲康. 二氧化铈体系表面化学性质及其催化性能的第一性原理研究[D]. 上海: 中国科学院研究生院(上海应用物理研究所), 2015.

    Han Zhong-kang. First principles study on surface chemical properties and catalytic performance of ceria system[D]. Shanghai: Graduate School of the Chinese Academy of Sciences (Shanghai Institute of Applied Physics), 2015.
    [37] ZHANG R, SZANYI J, GAO F, MCEWEN J S. The interaction of reactants, intermediates and products with Cu ions in Cu-SSZ-13 NH3 SCR catalysts: an energetic and ab initio X-ray absorption modeling study[J]. Catal Sci Technol,2016,6(15):5812−5829. doi: 10.1039/C5CY02252E
    [38] XU H X, CHENG D J, CAO D P, ZENG X C. A universal principle for a rational design of single-atom electrocatalysts[J]. Nat Catal,2018,1:339−348. doi: 10.1038/s41929-018-0063-z
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  9
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 修回日期:  2021-08-28
  • 网络出版日期:  2021-08-25

目录

    /

    返回文章
    返回