留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸

李思婵 邓玉龙 王海永 王晨光 马隆龙 刘琪英

李思婵, 邓玉龙, 王海永, 王晨光, 马隆龙, 刘琪英. Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸[J]. 燃料化学学报(中英文), 2022, 50(3): 314-325. doi: 10.1016/S1872-5813(21)60153-6
引用本文: 李思婵, 邓玉龙, 王海永, 王晨光, 马隆龙, 刘琪英. Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸[J]. 燃料化学学报(中英文), 2022, 50(3): 314-325. doi: 10.1016/S1872-5813(21)60153-6
LI Si-chan, DENG Yu-long, WANG Hai-yong, WANG Chen-guang, MA Long-long, LIU Qi-ying. Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 314-325. doi: 10.1016/S1872-5813(21)60153-6
Citation: LI Si-chan, DENG Yu-long, WANG Hai-yong, WANG Chen-guang, MA Long-long, LIU Qi-ying. Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 314-325. doi: 10.1016/S1872-5813(21)60153-6

Sn-Fe@C催化纤维素氢解制备丙酮醇和乳酸

doi: 10.1016/S1872-5813(21)60153-6
基金项目: 国家重点研发计划(2018YFB1501402)和国家自然科学基金青年基金(52006225)资助
详细信息
    作者简介:

    李思婵:lisc@ms.giec.ac.cn

    通讯作者:

    E-mail:wanghy@ms.giec.ac.cn

    liuqy@ms.giec.ac.cn

  • 中图分类号: O643.3

Production of acetol and lactic acid from cellulose hydrogenolysis over Sn-Fe@C catalysts

Funds: The project was supported by National Key R&D Project (2018YFB1501402) and the National Natural Science Foundation of China Youth Fund (52006225)
  • 摘要: 丙酮醇和乳酸都是具有很高利用价值的化学品,充分利用可再生的纤维素资源制备丙酮醇和乳酸,具有重要的意义。本研究采用溶胶-凝胶法并结合惰性气氛高温退火方法制备了Sn-Fe@C系列催化剂,探讨了该催化剂上纤维素水相体系一步氢解制备丙酮醇和乳酸的催化性能。研究发现,丙酮醇和乳酸的收率与催化剂的Sn/Fe比以及焙烧温度具有显著的相关性。以3Sn1Fe@C600为催化剂,在240 ℃,5 MPa H2压力和1 h的反应条件下,丙酮醇和乳酸的总收率为45.4%。催化剂物理化学性质的表征结果表明,催化剂的酸、碱性位及金属活性位点之间的协同催化作用,是纤维素选择性氢解制备丙酮醇和乳酸的关键。
  • FIG. 1386.  FIG. 1386.

    FIG. 1386.  FIG. 1386.

    图  1  不同Sn/Fe配比以及不同焙烧温度催化剂的N2吸附-脱附等温曲线

    Figure  1  N2 adsorption-desorption isotherms of catalysts with different Sn/Fe ratios and different annealing temperatures

    图  2  不同Sn/Fe配比(a)以及不同焙烧温度(b)催化剂的XRD谱图

    Figure  2  XRD patterns of catalysts with different Sn/Fe ratios (a) and different annealing temperatures (b)

    Sn, PDF#04-0673; SnOx, PDF#13-0111 and PDF#41-1445; Fe3O4, PDF#75-1609; FeSn2, PDF#25-0415

    图  3  不同Sn/Fe配比(a)以及不同焙烧温度催化剂((b)、(c))的Sn 3d((a)、(b))和Fe 2p(c)的XPS谱图

    Figure  3  Sn 3d ((a), (b)) and Fe 2p (c) XPS spectra of catalysts with different Sn/Fe ratios (a) and different annealing temperatures((b), (c)), 3Sn1Fea600, used catalyst

    图  4  不同焙烧温度催化剂的Py-FTIR谱图

    Figure  4  Py-FTIR spectra of catalysts with different annealing temperatures treatment temperatures

    (a): 50 ℃; (b): 200 ℃; (c): 250 ℃

    图  5  不同催化剂的CO2-TPD谱图

    Figure  5  CO2-TPD profiles of catalysts with different annealing temperatures

    图  6  不同催化剂对纤维素转化的影响

    Figure  6  Influences of different catalysts on cellulose conversion

    reaction condition: 0.2 g cellulose; 0.1 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2 a: 0.1 g cellulose; 0.05 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 5 MPa H2 La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose

    图  7  (a)焙烧温度,(b)Sn含量和(c)Fe含量对纤维素转化的影响

    Figure  7  Effect of (a) annealing temperature, (b) Sn content and Fe content on cellulose conversion

    Reaction condition: 0.2 g cellulose; 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2;La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose

    图  8  (a)催化剂用量,(b)底物用量对纤维素转化的影响

    Figure  8  Effect of (a) catalyst amount, (b) substrate amount on cellulose conversion

    Reaction condition: (a) 0.2 g cellulose, 0.01–0.06 g catalyst; (b) 0.4–2.0 g cellulose, 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2;La, lactic acid; 1-HB, 1-hydroxy-2-butanone; EG, ethylene glycol; Eth, ethanol; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; C6, fructose and glucose, the main product is fructose

    图  9  3Sn1Fe@C600催化剂催化纤维素转化为丙酮醇和乳酸的反应路径

    Figure  9  Reaction routes for cellulose conversion to acetol and lactic acid over 3Sn1Fe@C600

    图  10  (a)催化剂回收次数对纤维素转化的影响,(b)3Sn1Fe@C600催化剂使用前后的TEM照片,(c) 反应溶液的ICP分析

    Figure  10  (a) Effect of recycle times of catalyst on cellulose conversion, (b) TEM Patterns of 3Sn1Fe@C600 catalyst before(b1)-after(b2) use, (c) ICP-AES analysis of reaction solution

    表  1  不同催化剂的孔结构参数

    Table  1  Pore structural parameters of different catalysts

    CatalystSBET /(m2·g−1)v /(cm3·g−1)d /nm
    1Sn1Fe@C600 223.7 0.24 3.83
    2Sn1Fe@C600 249.9 0.07 3.83
    4Sn1Fe@C600 375.5 0.16 3.81
    5Sn1Fe@C600 365.7 0.11 3.83
    3Sn1Fe@C400 125.1 0.04 3.85
    3Sn1Fe@C500 73.5 0.08 3.82
    3Sn1Fe@C600 266.1 0.09 3.76
    3Sn1Fe@C700 293.6 0.11 3.79
    3Sn1Fe@C800 347.4 0.15 3.80
    SBET,BET surface area;v,pore volume;d,pore diameter
    下载: 导出CSV

    表  2  不同焙烧温度催化剂的B酸位和L酸位表征

    Table  2  Characterization results of B sites and L sites on catalysts with different annealing temperatures

    t /℃CatalystAcid /(µmol·g−1B/L
    BL
    50 3Sn1Fe@C400 5.44 56.47 0.0964
    3Sn1Fe@C500 3.05 44.04 0.0691
    3Sn1Fe@C600 2.04 69.74 0.0293
    3Sn1Fe@C700 2.13 46.16 0.0461
    3Sn1Fe@C800 4.59 34.25 0.134
    200 3Sn1Fe@C400 4.31 16.04 0.269
    3Sn1Fe@C500 1.95 18.40 0.106
    3Sn1Fe@C600 1.19 31.98 0.0372
    3Sn1Fe@C700 1.28 15.59 0.0818
    3Sn1Fe@C800 2.30 17.02 0.135
    250 3Sn1Fe@C400 0.73 11.43 0.0638
    3Sn1Fe@C500 0.83 6.66 0.125
    3Sn1Fe@C600 0.70 11.99 0.0576
    3Sn1Fe@C700 0.81 4.72 0.172
    3Sn1Fe@C800 1.35 7.05 0.191
    amount of acid sites was determined by quantifying the area of the characteristic diffraction peak. B acid, Brönsted acid; L acid, Lewis acid
    下载: 导出CSV

    表  3  其他催化剂对纤维素转化的影响

    Table  3  Influence of other catalysts on cellulose conversion

    CatalystConv. /%Yield wmoL/%
    acetolLA1-HB3-HBGlyEGEthC6total CA-L
    Sn@C600 56.2 17.1 0.1 6.3 0 0 0 7.7 0 17.2
    Fe@C600 31.9 4.3 7.9 0 0 0 0 0 0 12.1
    Sn@C600+Fe@C600 86.7 17.7 11.5 1.3 0 0 0 0 0 29.1
    SnO 63.4 23.3 4.2 3.8 0 0 0 4.0 0 27.5
    SnO2 24.3 0 0 1.0 0 0 0 0 7.0 0
    Reaction condition: 0.2 g cellulose; 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2; La, lactic acid; 1-HB, 1-hydroxy-2-butanone; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; EG, ethylene glycol; Eth, ethanol; C6, fructose and glucose, the main product is fructose; total CA-L, total yield of acetol and lactic acid
    下载: 导出CSV

    表  4  一系列不同催化剂对不同底物转化的影响

    Table  4  Influences of a series of different catalysts on different substrates conversion

    CatalystSubstrateConv. /%Yield wmoL/%
    acetolLA1-HB3-HBGlyEGEthC6total CA-L
    3Sn-1Fe@C600 glucose 100 16.9 3.1 2.3 3.3 0 0 0 0 20.0
    3Sn-1Fe@C600 fructose 100 12 6.8 0 4.7 0 0 0 0 18.8
    3Sn-1Fe@C600 glyceraldehyde 100 21.8 5.9 0 0 0 0 2.0 0 27.7
    3Sn-1Fe@C600 1,3-dihydroxyacetone 100 0 17.1 0 0 0 0.1 0 0 17.1
    3Sn-1Fe@C600 acetol 0 0 0 0 0 0 0 0 0 0
    3Sn-1Fe@C600 lactic acid 0 0 0 0 0 0 0 0 0 0
    Fe@C600 glucose 100 13.6 18.1 0 0 0.1 0 0 0 31.7
    Fe@Ca600 fructose 100 0 19.3 6.2 13.4 0 0 0 0 19.3
    Fe@C600 glyceraldehyde 100 20.5 21.0 0 0 0 0 0 0 41.5
    Fe@C600 1,3-dihydroxyacetone 100 0 21.3 0 0 0 0 0 0 21.3
    Sn@Ca600 glucose 100 7.2 4.5 1.9 0 0 0 0 0 11.7
    Sn@Ca600 fructose 100 7.2 4.1 0 0 0 0 0 0 11.3
    Sn@Ca600 glyceraldehyde 100 26.5 13.4 0 0 0 0 0 0 39.9
    Sn@Ca600 1,3-dihydroxyacetone 100 49.7 24.6 0 0 0 0 0 0 74.3
    SnO glucose 100 5.6 0.8 0 0 0 0 0 0 6.4
    SnO fructose 100 8.1 1.7 0 5.14 0 0 0 0 9.8
    SnO glyceraldehyde 100 15.0 16.1 0 0 0 0 0 0 31.1
    SnO 1,3-dihydroxyacetone 100 13.4 23.3 0 0 0 0 0 0 36.7
    SnO2 glucose 100 0 0 1.6 0 0 0 0 8.6 0
    Reaction condition: 0.2 g cellulose; 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 1 h and 4 MPa H2; a: 0.2 g cellulose; 0.08 g catalyst; 20 mL deionized water; reaction temperature 240 ℃; reaction time 10 min and 4 MPa H2;
    La, lactic acid; 1-HB, 1-hydroxy-2-butanone; 3-HB, 3-hydroxy-2-butanone; Gly, glycerol; EG, ethylene glycol; Eth, ethanol; C6, fructose and glucose, the main product is fructose; total CA-L, total yield of acetol and lactic acid
    下载: 导出CSV
  • [1] 李昌志, 王爱琴, 张涛. 离子液体介质中纤维素资源转化研究进展[J]. 化工学报,2013,64(1):182−197. doi: 10.3969/j.issn.0438-1157.2013.01.021

    LI Chang-zhi, WANG Ai-qin, ZHANG Tao. Progress of conversion of cellulose resource in ionic liquids[J]. CIESC J,2013,64(1):182−197. doi: 10.3969/j.issn.0438-1157.2013.01.021
    [2] 阎立峰, 朱清时. 以生物质为原材料的化学化工[J]. 化工学报,2004,(12):1938−1943. doi: 10.3321/j.issn:0438-1157.2004.12.002

    YAN Li-feng, ZHU Qing-shi. New chemical industry based on biomass[J]. CIESC J,2004,(12):1938−1943. doi: 10.3321/j.issn:0438-1157.2004.12.002
    [3] 郭肖, 颜雅妮, 张亚红, 唐颐. 生物质衍生糖多相催化转化[J]. 化学进展,2013,25(11):1915−1927.

    GUO Xiao, YAN Ya-ni, ZHANG Ya-hong, TANG Yi. Heterogeneously catalytic transformation of biomass-derived sugars[J]. Prog Chem,2013,25(11):1915−1927.
    [4] LAZARIDIS P A, KARAKOULIA S A, TEODORESCU C, APOSTOL N, MACOVEI D, PANTELI A, DELIMITIS A, COMAN S M, PARVULESCU V I, TRIANTAFYLLIDIS K S. High hexitols selectivity in cellulose hydrolytic hydrogenation over platinum (Pt) vs. ruthenium (Ru) catalysts supported on micro/mesoporous carbon[J]. Appl Catal B: Environ,2017,214:1−14. doi: 10.1016/j.apcatb.2017.05.031
    [5] GAO L F, BAO Y, GAN S Y, SUN Z H, SONG Z Q, HAN D X, LI F H, NIU L. Hierarchical nickel-cobalt-based transition metal oxide catalysts for the electrochemical conversion of biomass into valuable chemicals[J]. ChemSusChem,2018,11(15):2547−2553. doi: 10.1002/cssc.201800695
    [6] KESKIVALI J, RAUTIAINEN S, HEIKKILA M, MYLLYMAKI TTT, KARJALAINEN J P, LAGERBLOM K, KEMELL M, VEHKAMAKI M, MEINANDER K, REPO T. Isosorbide synthesis from cellulose with an efficient and recyclable ruthenium catalyst[J]. Green Chem,2017,19(19):4563−4570. doi: 10.1039/C7GC01821E
    [7] SATO S, SAKAI D, SATO F, YAMADA Y. Vapor-phase dehydration of glycerol into hydroxyacetone over silver catalyst[J]. Chem Lett,2012,41(9):965−966. doi: 10.1246/cl.2012.965
    [8] HOYOS P, SINISTERRA J V, MOLINARI F, ALCANTARA A R, DE MARIA P D. Biocatalytic strategies for the asymmetric synthesis of alpha-hydroxy ketones[J]. Accounts Chem Res,2010,43(2):288−299. doi: 10.1021/ar900196n
    [9] MOHAMAD. A review of acetol: Application and production[J]. Am J Appl Sci,2011,8:1135−1139. doi: 10.3844/ajassp.2011.1135.1139
    [10] DENG T Y, LIU H C. Direct conversion of cellulose into acetol on bimetallic Ni-SnOx/Al2O3 catalysts[J]. J Mol Catal A: Chem,2014,388:66−73.
    [11] WANG H Y, ZHU C H, LIU Q Y, TAN J, WANG C G, LIANG Z, MA L L. Selective conversion of cellulose to hydroxyacetone and 1-hydroxy-2-butanone with Sn-Ni bimetallic catalysts[J]. ChemSusChem,2019,12(10):2154−2160. doi: 10.1002/cssc.201900172
    [12] LIU X H, LIU X D, XU G Y, ZHANG Y, WANG C G, LU Q, MA L L. Highly efficient catalytic conversion of cellulose into acetol over Ni-Sn supported on nanosilica and the mechanism study[J]. Green Chem,2019,21(20):5647−5656. doi: 10.1039/C9GC02449B
    [13] 王勇, 邹献武, 秦特夫. 生物质转化及生物质油精制的研究进展[J]. 化学与生物工程,2010,27(9):1−5. doi: 10.3969/j.issn.1672-5425.2010.09.001

    WANG Yong, ZOU Xian-wu, QIN Te-fu. Research progress on technologies of biomass conversion and upgrading of bio-oil[J]. Chem Bioeng,2010,27(9):1−5. doi: 10.3969/j.issn.1672-5425.2010.09.001
    [14] DATTA R, HENRY M. Lactic acid: Recent advances in products, processes and technologies - a review[J]. J Chem Technol Biotechnol,2006,81(7):1119−1129. doi: 10.1002/jctb.1486
    [15] RIZESCU C, PODOLEAN I, COJOCARU B, PARVULESCU V I, COMAN S M, ALBERO J, GARCIA H. RuCl3 supported on n-doped graphene as a reusable catalyst for the one-step glucose oxidation to succinic Acid[J]. ChemCatChem,2017,9(17):3314−3321. doi: 10.1002/cctc.201700383
    [16] 曾炜, 陈丰秋, 詹晓力. 乳酸的生产技术及其研究进展[J]. 化工进展,2006,18(7):744−749. doi: 10.3321/j.issn:1000-6613.2006.07.005

    ZENG Wei, CHEN Feng-qiu, ZHAN Xiao-li. Advances in production technology of lactic acid[J]. Chem Ind Eng Prog,2006,18(7):744−749. doi: 10.3321/j.issn:1000-6613.2006.07.005
    [17] DENG W P, WANG P, WANG B J, WANG Y L, YAN L F, LI Y Y, ZHANG Q H, CAO Z X, WANG Y. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts[J]. Green Chem,2018,20(3):735−744. doi: 10.1039/C7GC02975F
    [18] LI L Y, SHEN F, SMITH R L, QI X H. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature[J]. Green Chem,2017,19(1):76−81. doi: 10.1039/C6GC02443B
    [19] LEI X, WANG F F, LIU C L, YANG R Z, DONG W S. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst[J]. Appl Catal A: Gen,2014,482:78−83. doi: 10.1016/j.apcata.2014.05.029
    [20] ZHANG S P, JIN F M, HU J J, HUO Z B. Improvement of lactic acid production from cellulose with the addition of Zn/Ni/C under alkaline hydrothermal conditions[J]. Bioresour Technol,2011,102(2):1998−2003. doi: 10.1016/j.biortech.2010.09.049
    [21] WANG Y L, DENG W P, WANG B J, ZHANG Q H, WAN X Y, TANG Z C, WANG Y, ZHU C, CAO Z X, WANG G C, WAN H L. Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water[J]. Nat Commun,2013,4:2141.
    [22] SING K S W, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUEROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (recommendations 1984)[J]. Pure Appl Chem,1985,57(4):603−619. doi: 10.1351/pac198557040603
    [23] LAU C L, WERTHEIM G K. Oxidation of tin - esca study[J]. J Vac Sci Technol,1978,15(2):622−624. doi: 10.1116/1.569642
    [24] ZENG J, PENG C Q, WANG R C, CAO C Y, WANG X F, LIU J. Magnetic Sn/SnO/FeSn2 nanocomposite as a high-performance anode material for lithium-ion batteries[J]. Powder Technol,2020,364:719−724. doi: 10.1016/j.powtec.2020.01.057
    [25] HU C Q, GAO Z H, YANG X R. Fabrication and magnetic properties of Fe3O4 octahedra[J]. Chem Phys Lett,2006,429(4/6):513−517. doi: 10.1016/j.cplett.2006.08.041
    [26] YAMASHITA T, HAYES P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials[J]. Appl Surf Sci,2008,254(8):2441−2449. doi: 10.1016/j.apsusc.2007.09.063
    [27] EMEIS C A. Determination of integrated molar extinction coefficients for infrared-absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal,1993,141(2):347−54. doi: 10.1006/jcat.1993.1145
    [28] WANG H Y, XIN H S, CAI C L, ZHU C H, XIU Z X, LIU Q Y, WENG Y J, WANG C G, ZHANG X H, LIU S J, PENG Z F, MA L L. Selective C-3-C-4 keto-alcohol production from cellulose hydrogenolysis over Ni-WOx/C catalysts[J]. ACS Catal,2020,10(18):10646−10660. doi: 10.1021/acscatal.0c02375
    [29] XIU Z X, WANG H Y, CAI C L, LI C Z, YAN L, WANG C G, LI W Z, XIN H S, ZHU C H, ZHANG Q, LIU Q Y, MA L L. Ultrafast glycerol conversion to lactic acid over magnetically recoverable Ni-NiOx@C catalysts[J]. Ind Eng Chem Res,2020,59(21):9912−9925. doi: 10.1021/acs.iecr.0c01145
    [30] KISHIDA H, JIN F M, ZHOU Z Y, MORIYA T, ENOMOTO H. Conversion of glycerin into lactic acid by alkaline hydrothermal reaction[J]. Chem Lett,2005,34(11):1560−1561. doi: 10.1246/cl.2005.1560
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  141
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-23
  • 修回日期:  2021-08-25
  • 网络出版日期:  2021-09-22
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回