留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy

LI Pei-xia QU Long-mei ZHANG Cai-hong REN Xiao-bo WANG Hui-xiang ZHANG Jian-li MU Yue-wen LÜ Bao-liang

李培侠, 曲龙梅, 张彩虹, 任晓波, 王会香, 张建利, 穆跃文, 吕宝亮. 原位拉曼光谱研究CO还原α-Fe2O3过程的晶面效应[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60154-8
引用本文: 李培侠, 曲龙梅, 张彩虹, 任晓波, 王会香, 张建利, 穆跃文, 吕宝亮. 原位拉曼光谱研究CO还原α-Fe2O3过程的晶面效应[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60154-8
LI Pei-xia, QU Long-mei, ZHANG Cai-hong, REN Xiao-bo, WANG Hui-xiang, ZHANG Jian-li, MU Yue-wen, LÜ Bao-liang. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60154-8
Citation: LI Pei-xia, QU Long-mei, ZHANG Cai-hong, REN Xiao-bo, WANG Hui-xiang, ZHANG Jian-li, MU Yue-wen, LÜ Bao-liang. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60154-8

原位拉曼光谱研究CO还原α-Fe2O3过程的晶面效应

doi: 10.1016/S1872-5813(21)60154-8
详细信息
  • 中图分类号: TF533.1

Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy

Funds: The project was supported by National Natural Science Foundation of China (21972158), Research Project Supported by Shanxi Scholarship Council of China (2020-196), Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (2021-K10), Shanxi Province Science Foundation for Youths (201901D211583) and the Doctoral Start-up Foundation of Shanxi Province (SQ2019006)
More Information
  • 摘要: 氧化铁作为铁基费托合成主催化剂的前驱体,其还原活化过程对催化剂整体性能有着至关重要的影响。α-Fe2O3作为一种晶体材料,其暴露晶面对铁基催化剂的还原和活化过程有重要影响,但目前对此仍然缺乏必要的研究。本研究合成了六角片、立方体和菱面体三种不同形貌的α-Fe2O3单晶纳米颗粒,其对应主暴露面分别为(001)、(102)和(104)晶面,然后利用原位拉曼光谱(ORS)研究了CO还原过程中α-Fe2O3晶体结构的转变过程。结果发现,与(104)和(102)晶面相比,(001)晶面具有更好的还原活性。对于三种晶面上的CO吸附和CO2脱附,SEM、TEM和XPS等表征以及DFT理论计算结果表明,CO2脱附是还原过程的决速步骤;(001)晶面对氧原子的束缚能力较弱,导致了其表面CO2更容易脱附,从而促进了整个还原过程。
  • Figure  1  XRD patterns of three α-Fe2O3 samples

    Figure  2  SEM images of (a) Fe2O3-C, (b) Fe2O3-H, and (c) Fe2O3-R

    Figure  3  TEM images, SAED patterns, HRTEM images and corresponding crystal structures of the fresh α-Fe2O3 nanocrystals: (a1)–(a4) Fe2O3-C; (b1)–(b4) Fe2O3-H; and (c1)–(c4) Fe2O3-R

    Figure  4  In situ Raman spectra of (a) Fe2O3-C, (b) Fe2O3-H and (c) Fe2O3-R at 350 °C in 10% CO/Ar

    Figure  5  Adsorption of CO on α-Fe2O3 with different exposed crystal planes (Yellow and red balls stand for Fe and O atoms of iron oxide lattice, respectively; brown and purple balls stand for C and O atoms of CO molecular, respectively)

    Figure  6  XPS spectra of (a) Fe 2p and (b) O 1s of various α-Fe2O3 samples

    Table  1  Length of O–Fe bond and the adsorption energy of CO adsorption on different planes of α-Fe2O3

    FacetO–Fe bond length/ÅAdsorption energy/eV
    102-12.124.15
    102-21.834.21
    001-12.463.76
    001-12.403.79
    104-11.991.98
    104-12.010.39
    下载: 导出CSV

    Table  2  Peak position (eV) in the Fe 2p and O 1s XPS spectra and relative contents of various O species (in parentheses) estimated from O 1s XPS spectra for different α-Fe2O3 samples

    SampleFe 2p1/2Fe 2p3/2OLOVOC
    Fe2O3-C724.1710.4529.3 (59.7%)529.8 (24.6%)531.2 (15.7%)
    Fe2O3-H724.3710.7529.4 (56.3%)529.9 (27.1%)531.2 (16.6%)
    Fe2O3-R724.1710.7529.4 (60.7%)529.7 (24.0%)531.4 (15.3%)
    下载: 导出CSV
  • [1] SCHLOGL R. Heterogeneous catalysis[J]. Angew Chem Int Ed,2015,54(11):3465−3520. doi: 10.1002/anie.201410738
    [2] WANG H, JIN B, WANG H, MA N, LIU W, WENG D, WU X, LIU S. Study of Ag promoted Fe2O3@CeO2 as superior soot oxidation catalysts: the role of Fe2O3 crystal plane and tandem oxygen delivery[J]. Appl Catal B: Environ,2018,237:251−262. doi: 10.1016/j.apcatb.2018.05.093
    [3] DING D, HUANG Y, ZHOU C, LIU Z, REN J, ZHANG R, WANG J, ZHANG Y, LEI Z, ZHANG Z, ZHI C. Facet-controlling agents free synthesis of hematite crystals with high-index planes: Excellent photodegradation performance and mechanism insight[J]. ACS Appl Mater Interfaces,2016,8(1):142−151. doi: 10.1021/acsami.5b07843
    [4] WU J B, SUN Z P, WEI Z H, QIN Z F, ZHAO Y X. Catalytic performance and mechanistic insights into the synthesisof polyoxymethylene dimethyl ethers from dimethoxymethaneand trioxymethylene over ZSM-5 zeolite[J]. Catal Lett,2021,151:670−684. doi: 10.1002/adma.201101803
    [5] SUN J, CHEN Y, CHEN J. Morphology effect of one-dimensional iron oxide nanocatalysts on Fischer-Tropsch synthesis[J]. Catal Sci Technol,2016,6(20):7505−7511. doi: 10.1039/C6CY01258B
    [6] NUMPILAI T, WITOON T, CHANLEK N, LIMPHIRAT W, BONURA G, CHAREONPANICH M, LIMTRAKUL J. Structure-activity relationships of Fe-Co/K-Al2O3 catalysts calcined at different temperatures for CO2 hydrogenation to light olefins[J]. Appl Catal A: Gen,2017,547:219−229. doi: 10.1016/j.apcata.2017.09.006
    [7] ZHANG Y, CAO C, ZHANG C, ZHANG Z, LIU X, YANG Z, ZHU M, MENG B, XU J, HAN Y. The study of structure-performance relationship of iron catalyst during a full life cycle for CO2 hydrogenation[J]. J Catal,2019,378:51−62. doi: 10.1016/j.jcat.2019.08.001
    [8] XIN Y, ZHANG N, LI Q, ZHANG Z, CAO X, ZHENG L, ZENG Y, ANDERSO J A. Active site identification and modification of electronic states by atomic-scale doping to enhance oxide catalyst innovation[J]. ACS Catal,2018,8(2):1399−1404. doi: 10.1021/acscatal.7b02638
    [9] XIANG Q, CHEN G, LAU C. Effects of morphology and exposed facets of α-Fe2O3 nanocrystals on photocatalytic water oxidation[J]. RSC Adv,2015,5(64):52210−52216. doi: 10.1039/C5RA09354F
    [10] WEI S, WANG W, FU X, LI S, JIA C. The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation[J]. J Catal,2019,376:134−145. doi: 10.1016/j.jcat.2019.06.038
    [11] JIAN Y, YU T, JIANG Z, YU Y, DOUTHWAITE M, LIU J, ALBILALI R, HE C. In-depth understanding of the morphology effect of alpha-Fe2O3 on catalytic ethane destruction[J]. ACS Appl Mater Interfaces,2019,11:11369−11383. doi: 10.1021/acsami.8b21521
    [12] QIN C, HOU B, WANG J, WANG Q, WANG G, YU M, CHEN C, JIA L, LI D. Crystal-plane-dependent Fischer-Tropsch performance of cobalt catalysts[J]. ACS Catal,2018,8(10):9447−9455. doi: 10.1021/acscatal.8b01333
    [13] LIU Y, LUA F, TANG Y, LIU M, TAO F F, ZHANG Y. Effects of initial crystal structure of Fe2O3 and Mn promoter on effective active phase for syngas to light olefins[J]. Appl Catal B: Environ,2020,261:118219. doi: 10.1016/j.apcatb.2019.118219
    [14] LIU Z, HU P. A new insight into Fischer-Tropsch synthesis[J]. J Am Chem Soc,2002,124:11568−11569. doi: 10.1021/ja012759w
    [15] SMIT E D, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37:2758−2781. doi: 10.1039/b805427d
    [16] DRY M E. The Fischer-Tropsch process: 1950–2000[J]. Catal Today,2002,71:227−241. doi: 10.1016/S0920-5861(01)00453-9
    [17] MARKVOORT A J, VANSANTEN R A, HILBERS P A J, HENSSEN E J M. Kinetics of the Fischer-Tropsch reaction[J]. Angew Chem Int Ed,2012,51(36):9015−9019. doi: 10.1002/anie.201203282
    [18] DING M, YANG Y, WU B, WANG T, XIANG H, LI Y. Effect of reducing agents on microstructure and catalytic performance of precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Fuel Process Technol,2011,92:2353−2359. doi: 10.1016/j.fuproc.2011.08.011
    [19] CHEN G, WATERHOUSE G I N, SHI R, ZHAO J, LI Z, WU L, TUNG C, ZHANG T. From solar energy to fuels: Recent advances in light‐driven C1 chemistry[J]. Angew Chem Int Ed,2019,58(49):17528−17551. doi: 10.1002/anie.201814313
    [20] DRY M E. High quality diesel via the Fischer-Tropsch process-A review[J]. J Chem Technol Biotechnol,2002,77(1):43−50. doi: 10.1002/jctb.527
    [21] MEGANM M, KARAKAYA C, KEE R J, BRIANG T. In situ formation of metal carbide catalysts[J]. ChemCatChem,2017,9:3090−3101. doi: 10.1002/cctc.201700304
    [22] WANG D, CHEM B, DUAN X, CHEN D, ZHOU X. Iron-based Fischer-Tropsch synthesis of lower olefins: the nature of χ-Fe5C2 catalyst and why and how to introduce promoters[J]. J Energy Chem,2016,25:911−916. doi: 10.1016/j.jechem.2016.11.002
    [23] JANBROERS S, LOUWEN J N, ZANDBERGEN H W, KOOYMAN P J. Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD[J]. J Catal,2009,268(2):235−242. doi: 10.1016/j.jcat.2009.09.021
    [24] PEREZ S, MONDRAGON F, MORENO A. Iron ore as precursor for preparation of highly active χ-Fe5C2 core-shell catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2019,587:117264. doi: 10.1016/j.apcata.2019.117264
    [25] VARANDA L C, JAFELICCI M, TARTAJ P, OGRADY K, GONZALEZ-CARRENO T, MORALES M P, MUNOZ T, SERNA C J. Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere[J]. J Appl Phys,2002,92(4):2079−2085. doi: 10.1063/1.1496124
    [26] FEILMMAYR C, THURNHOFER A, WINTER F, MALI H, SCHENK J. Reduction behavior of hematite to magnetite under fluidized bed conditions[J]. ISIJ Int,2004,44:1125−1133. doi: 10.2355/isijinternational.44.1125
    [27] SANTEN R A V, GHOURI M M, SHETTY S, HENSE E M H. Structure sensitivity of the Fischer-Tropsch reaction; molecular kinetics simulations[J]. Catal Sci Technol,2011,1:891−911. doi: 10.1039/c1cy00118c
    [28] BUKUR D B, KORANNE M, LANG X, RAO K R P M, HUFFMAN G P. Pretreatment effect studies with a precipitated iron Fischer-Tropsch catalyst[J]. Appl Catal A: Gen,1995,126:85−113. doi: 10.1016/0926-860X(95)00020-8
    [29] LI S, OBRIEN R J, MEITZNER G D, HAMDEH H, DAVIS B H, IGLESIA E. Structural analysis of unpromoted Fe-based Fischer-Tropsch catalysts using X-ray absorption spectroscopy[J]. Appl Catal A: Gen,2001,219:215−222. doi: 10.1016/S0926-860X(01)00694-9
    [30] DING M, YANG Y, WU B, LI Y, WANG T, MA L. Study on reduction and carburization behaviors of iron phases for iron-based Fischer-Tropsch synthesis catalyst[J]. Appl Energy,2014,160:982−989.
    [31] CANO L A, CAGNOLI M V, BENGOA J F, ALVAREZ A M, MARCHETTI S G. Effect of the activation atmosphere on the activity of Fe catalysts supported on SBA-15 in the Fischer-Tropsch synthesis[J]. J Catal,2011,278:310−320. doi: 10.1016/j.jcat.2010.12.017
    [32] ZHANG Y, FU D, LIU X, ZHANG Z, ZHANG C, SHI B, XU J, HAN Y. Operando spectroscopic study of dynamic structure of iron oxide catalysts during CO2 hydrogenation[J]. ChemCatChem,2018,10(6):1272−1276. doi: 10.1002/cctc.201701779
    [33] AN H, ZHANG F, GUAN Z, LIU X, FAN F, LI C. Investigating the coke formation mechanism of H-ZSM-5 during methanol dehydration using operando UV-Raman spectroscopy[J]. ACS Catal,2018,8:9207−9215. doi: 10.1021/acscatal.8b00928
    [34] GAUR A, SCHUMANN M, RAUN K V, STEHLE M, BEATO P, JENSEN A D, GRUNWALDT J D, HØJ M. Operando XAS/XRD and Raman spectroscopic study of structural changes of the iron Molybdate catalyst during selective oxidation of methanol[J]. ChemCatChem,2019,11:4871−4883. doi: 10.1002/cctc.201901025
    [35] BANARES M A. Operando spectroscopy: the knowledge bridge to assessing structure-performance relationships in catalyst nanoparticles[J]. Adv Mater,2011,23:5293−5301. doi: 10.1002/adma.201101803
    [36] PATLOLLA A, CARINO E V, EHRLICH S N, STAVITSKI E, FRENKEL A I. Application of operando XAS, XRD, and Raman spectroscopy for phase speciation in water gas shift reaction catalysts[J]. ACS Catal,2012,2:2216−2223. doi: 10.1021/cs300414c
    [37] ZHANG Y, FU D, XU X, SHENG Y, XU J, HAN Y. Application of operando spectroscopy on catalytic reactions[J]. Curr Opin Chem Eng,2016,12:1−7. doi: 10.1016/j.coche.2016.01.004
    [38] FU D, DAI W, XU X, MAO W, SU J, ZHANG Z, SHI B, SMITH J, LI P, XU J, HAN Y. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem,2015,7:752−756. doi: 10.1002/cctc.201402980
    [39] SATTLER J J H B, MENS A M, WECKHUYSEN B M. Real-time quantitative operando Raman spectroscopy of a CrOx/Al2O3 propane dehydrogenation catalyst in a pilot-scale reactor[J]. ChemCatChem,2014,6(11):3139−3145. doi: 10.1002/cctc.201402649
    [40] KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B,1996,54:11169−11186. doi: 10.1103/PhysRevB.54.11169
    [41] KRESSE G, HAFNER J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements[J]. J Phys Condens Matter,1994,6:8245−8257. doi: 10.1088/0953-8984/6/40/015
    [42] BLOCHL P E. Projector augmented-wave method[J]. Phys Rev B: Condens Matter,1994,50:17953−17979. doi: 10.1103/PhysRevB.50.17953
    [43] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys Rev B,1999,59:1758−1775.
    [44] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77:3865−3868. doi: 10.1103/PhysRevLett.77.3865
    [45] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B,1976,13:5188−5192. doi: 10.1103/PhysRevB.13.5188
    [46] COCOCCIONI M, DEGIRONCOLI S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method[J]. Phys Rev B,2005,71:035105. doi: 10.1103/PhysRevB.71.035105
    [47] HANESCH M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies[J]. Geophys J Int,2009,177(3):941−948. doi: 10.1111/j.1365-246X.2009.04122.x
    [48] SHEBANOVA O N, LAZOR P. Raman spectroscopic study of magnetite (FeFe2O4): A new assignment for the vibrational spectrum[J]. J Solid State Chem,2003,174(2):424−430. doi: 10.1016/S0022-4596(03)00294-9
    [49] BELIN T, EPRON F. Characterization methods of carbon nanotubes: a review[J]. Mater Sci Eng B,2005,119:105−118. doi: 10.1016/j.mseb.2005.02.046
    [50] DONG C, SHENG S, QIN W, LU Q, ZHAO Y, WANG X, ZHANG J. Density functional theory study on activity of α-Fe2O3 in chemical-looping combustion system[J]. Appl Surf Sci,2011,257(20):8647−8652. doi: 10.1016/j.apsusc.2011.05.042
    [51] LIU Y, CHUNG J, JANG Y, MAO S, KIM B M, WANG Y, GUO X. Magnetically recoverable nanoflake-shaped iron oxide/Pt heterogeneous catalysts and their excellent catalytic performance in the hydrogenation reaction[J]. ACS Appl Mater Interfaces,2014,6:1887−1892. doi: 10.1021/am404904p
    [52] WU Z, LI Z, LI H, SUN M, HAN S, CAI C, SHEN W, FU Y. Ultrafast response/recovery and high selectivity of the H2S gas sensor based on α-Fe2O3 nano-ellipsoids from one-step hydrothermal synthesis[J]. ACS Appl Mater Interfaces,2019,11:12761−12769. doi: 10.1021/acsami.8b22517
    [53] SUN L, ZHAN W, LI Y, WANG F, ZHANG X, HAN X. Understanding the facet-dependent catalytic performance of hematite microcrystals in a CO oxidation reaction[J]. Inorg Chem Front,2018,5:2332−2339.
    [54] LIU X, LIU J, CHANG Z, SUN X, LI Y. Crystal plane effect of Fe2O3 with various morphologies on CO catalytic oxidation[J]. Catal Commun,2011,12:530−534. doi: 10.1016/j.catcom.2010.11.016
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  11
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-13
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回