留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ-Fe2O3纳米颗粒尺寸及碳化气氛对碳化过程的影响

樊竞元 吕振刚 张成华 许健 相宏伟

樊竞元, 吕振刚, 张成华, 许健, 相宏伟. γ-Fe2O3纳米颗粒尺寸及碳化气氛对碳化过程的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 218-226. doi: 10.1016/S1872-5813(21)60157-3
引用本文: 樊竞元, 吕振刚, 张成华, 许健, 相宏伟. γ-Fe2O3纳米颗粒尺寸及碳化气氛对碳化过程的影响[J]. 燃料化学学报(中英文), 2022, 50(2): 218-226. doi: 10.1016/S1872-5813(21)60157-3
FAN Jing-yuan, LÜ Zhen-gang, ZHANG Cheng-hua, XU Jian, XIANG Hong-wei. Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 218-226. doi: 10.1016/S1872-5813(21)60157-3
Citation: FAN Jing-yuan, LÜ Zhen-gang, ZHANG Cheng-hua, XU Jian, XIANG Hong-wei. Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 218-226. doi: 10.1016/S1872-5813(21)60157-3

γ-Fe2O3纳米颗粒尺寸及碳化气氛对碳化过程的影响

doi: 10.1016/S1872-5813(21)60157-3
基金项目: 国家自然科学基金(91545109)资助
详细信息
    作者简介:

    樊竞元:fanjingyuan18@mails.ucas.ac.cn

    通讯作者:

    Tel:+86-6977-3996,E-mail:xujian@synfuelschina.com.cn

  • 中图分类号: O643

Study on size effect of γ-Fe2O3 nanoparticles and gas atmosphere on carburization process

Funds: The project was supported by National Natural Science Foundation of China (91545109)
  • 摘要: 采用油酸铁热分解法制备出不同尺寸(4−19 nm)的γ-Fe2O3纳米颗粒,在350 ℃下,于5%CO/He、5%CO/10%H2/He和5%CO/20%H2/He的三种气氛中,使用原位XRD反应装置研究了γ-Fe2O3纳米颗粒的碳化过程与物相变化规律,同时结合Raman、CO-TPR和TEM等手段对样品进行了表征。结果表明,γ-Fe2O3纳米颗粒完全碳化后会形成稳定比例的χ-Fe5C2θ-Fe3C的混合相;在相同碳化气氛下,随γ-Fe2O3颗粒尺寸增大完全碳化所需时间缩短,尺寸较小的γ-Fe2O3颗粒表面残留炭较多,会抑制碳化反应进程,碳化相中θ-Fe3C相对含量随γ-Fe2O3纳米颗粒尺寸增大而增高;相同尺寸的γ-Fe2O3颗粒在不同气氛下碳化,完全碳化所需时间随H2分压增大先缩短后略有延长,碳化相中θ-Fe3C相对含量随H2分压增大而增高。通过调节γ-Fe2O3颗粒尺寸和碳化气氛可定向制得合适比例的χ-Fe5C2θ-Fe3C混合相,这一结果有益于费托合成铁基催化剂中的铁碳化物活性相结构的优化。
  • FIG. 1267.  FIG. 1267.

    FIG. 1267.  FIG. 1267.

    图  1  不同尺寸γ-Fe2O3纳米颗粒XRD谱图

    Figure  1  XRD patterns of γ-Fe2O3 nanoparticles of different sizes

    图  2  不同尺寸γ-Fe2O3纳米颗粒Raman谱图

    Figure  2  Raman spectra of γ-Fe2O3 nanoparticles of different sizes

    图  3  γ-Fe2O3纳米颗粒TEM照片及其颗粒尺寸分布

    Figure  3  Distribution graph and TEM images of γ-Fe2O3 nanoparticles of different sizes

    图  4  350 ℃下不同尺寸γ-Fe2O3纳米颗粒Raman谱图

    Figure  4  Raman spectra of γ-Fe2O3 nanoparticles of different sizes at 350 ℃

    图  5  不同尺寸γ-Fe2O3纳米颗粒的CO-TPR谱图

    Figure  5  CO-TPR profiles of γ-Fe2O3 nanoparticles of different sizes

    图  6  γ-Fe2O3颗粒在5%CO/20%H2/He碳化后χ-Fe5C2θ-Fe3C混合相XRD谱图

    Figure  6  XRD patterns of mixed phase of χ-Fe5C2 and θ-Fe3C after carburization of γ-Fe2O3 particles with 10 nm at 350 ℃ in 5%CO/20%H2/He

    图  7  γ-Fe2O3在5%CO/He中碳化产物相对含量

    Figure  7  Relative abundance of carbonation products of γ-Fe2O3 with 10 nm at 270 ℃ in 5%CO/He

    图  8  γ-Fe2O3在5%CO/He中碳化产物相对含量

    Figure  8  Relative abundance of carbonation products of γ-Fe2O3 with 10 nm at 300 ℃ in 5%CO/He

    图  9  γ-Fe2O3在5%CO/He中碳化产物相对含量

    Figure  9  Relative abundance of carburization products of γ-Fe2O3 with 10 nm at 350 ℃ in 5%CO/He

    图  10  γ-Fe2O3在5%CO/10%H2/He中碳化产物相对含量

    Figure  10  Relative abundance of carburization products of γ-Fe2O3 with 4 nm at 350 ℃ in 5%CO/10%H2/He

    图  11  γ-Fe2O3在5%CO/10%H2/He中碳化产物相对含量

    Figure  11  Relative abundance of carbonation products of γ-Fe2O3 with 10 nm at 350 ℃ in 5%CO/10%H2/He

    图  12  γ-Fe2O3在5%CO/10%H2/He中碳化产物相对含量

    Figure  12  Relative abundance of carbonation products of γ-Fe2O3 with 19 nm at 350 ℃ in 5%CO/10%H2/He

    图  13  γ-Fe2O3在5%CO/20%H2/He中碳化产物相对含量

    Figure  13  Relative abundance of carbonation products of γ-Fe2O3 with 4 nm at 350 ℃ in 5%CO/20%H2/He

    图  14  γ-Fe2O3在5%CO/20%H2/He中碳化产物相对含量

    Figure  14  Relative abundance of carburization products of γ-Fe2O3 with 10 nm at 350 ℃ in 5%CO/20%H2/He

    图  15  γ-Fe2O3在5%CO/20%H2/He中碳化产物相对含量

    Figure  15  Relative abundance of carbonation products of γ-Fe2O3 with 19 nm at 350 ℃ in 5%CO/20%H2/He

    表  1  350 下不同尺寸γ-Fe2O3在不同气氛下完全碳化所需时间及碳化产物分布

    Table  1  Time required for complete carburization of different sizes of γ-Fe2O3 in different atmospheres and the distribution of carburization products at 350 ℃

    Sample5%CO/He w/%5%CO/10%H2/He w/%5%CO/20%H2/He w/%
    4 nm15 h4 h3.5 h
    Fe5C2 (0)Fe5C2 (85%)Fe5C2 (65%)
    Fe3C (0)Fe3C (15%)Fe3C (35%)
    10 nm5 h1 h0.5 h
    Fe5C2 (80%)Fe5C2 (60%)Fe5C2 (50%)
    Fe3C (20%)Fe3C (40%)Fe3C (50%)
    19 nm3 h1.3 h1.3 h
    Fe5C2 (20%)Fe5C2 (60%)Fe5C2 (55%)
    Fe3C (80%)Fe3C (40%)Fe3C (45%)
    下载: 导出CSV
  • [1] VAN STEEN E, CLAEYS M. Fischer-Tropsch catalysts for the biomass to liquid process[J]. Chem Eng Technol,2008,31(5):655−666. doi: 10.1002/ceat.200800067
    [2] YANG Y, XU J, LIU Z Y, GUO Q, YE M, WANG G, GAO J, WANG J, ZHU Z, GE W, LIU Z, WANG F, LI Y. Progress in coal chemical technologies of China[J]. Rev Chem Eng,2020,36(1):21−66.
    [3] 温晓东, 杨勇, 相宏伟, 焦海军, 李永旺. 费托合成铁基催化剂的设计基础: 从理论走向实践[J]. 中国科学:化学,2017,47(11):1298−1311. doi: 10.1360/N032017-00111

    WEN Xiao-dong, YANG Yong, XIANG Hong-wei, JIAO Hai-jun, LI Yong-wang. The design principle of iron-based catalysts for fischer-tropsch synthesis: from theory to practice[J]. Sci Sin Chim,2017,47(11):1298−1311. doi: 10.1360/N032017-00111
    [4] DICTOR R A, BELL A T. Fischer-Tropsch synthesis over reduced and unreduced iron-oxide catalysts[J]. J Catal,1986,97(1):121−136. doi: 10.1016/0021-9517(86)90043-6
    [5] TORRES GALVIS H M, BITTER J H, KHARE C B, RUITENBEEK M, DUGULAN A L, DE JONG K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins[J]. Science,2012,335(6070):835−838. doi: 10.1126/science.1215614
    [6] 定明月, 杨勇, 相宏伟, 李永旺. 费托合成Fe基催化剂中铁物相与活性的关系[J]. 催化学报,2010,31(9):1145−1150.

    DING Ming-yue, YANG Yong, XIANG Hong-wei, LI Yong-wang. Relationship between iron phase and activity of iron-based Fischer-Tropsch synthesis catalyst[J]. Chin J Catal,2010,31(9):1145−1150.
    [7] BIAN G Z, OONUKI A, KOIZUMI N, NOMOTO H, YAMADA M. Studies with a precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO[J]. J Mol Catal A: Chem,2002,186(1/2):203−213. doi: 10.1016/S1381-1169(02)00186-3
    [8] YANG C, ZHAO H, HOU Y, MA D. Fe5C2 nanoparticles: A facile bromide-induced synthesis and as an active phase for Fischer-Tropsch synthesis[J]. J Am Chem Soc,2012,134(38):15814−15821. doi: 10.1021/ja305048p
    [9] MA C, ZHANG W, CHANG Q, WANG X, WANG H, CHEN H, WEI Y, ZHANG C, XIANG H, YANG Y, LI Y. θ-Fe3C dominated Fe@C core-shell catalysts for Fischer-Tropsch synthesis: roles of θ-Fe3C and carbon shell[J]. J Catal,2021,393:238−246. doi: 10.1016/j.jcat.2020.11.033
    [10] LO J M H, ZIEGLER T. Density functional theory and kinetic studies of methanation on iron surface[J]. J Phys Chem C,2007,111(29):11012−11025. doi: 10.1021/jp0722206
    [11] PARK J, AN K J, HWANG Y S, PARK J G, NOH H J, KIM J Y, PARK J H, HWANG N M, HYEON T W. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat Mater,2004,3(12):891−895. doi: 10.1038/nmat1251
    [12] YU W W, FALKNER J C, YAVUZ C T, COLVIN V L. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts[J]. Chem Commun,2004,20:2306−2307.
    [13] KIM B H, LEE N, KIM H, AN K, PARK Y I, CHOI Y, SHIN K, LEE Y, KWON S G, NA H B, PARK J G, AHN T Y, KIM Y W, MOON W K, CHOI S H, HYEON T. Large-scale synthesis of uniform and extremely small-sized iron oxide nanoparticles for high-resolution T1 magnetic resonance imaging contrast agents[J]. J Am Chem Soc,2011,133(32):12624−12631. doi: 10.1021/ja203340u
    [14] 郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009

    GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, LV Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. J Fuel Chem Technol,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009
    [15] LI C, STAIR P C. An advance in Raman studies of catalysts: Ultraviolet resonance Raman spectroscopy[J]. Stud Surf Sci Catal,1996,101:881−890.
    [16] BUTOVSKY E, PERELSHTEIN I, GEDANKEN A. Air stable core-shell multilayer metallic nanoparticles synthesized by RAPET: Fabrication, characterization and suggested applications[J]. J Mater Chem,2012,22(30):15025−15030. doi: 10.1039/c2jm32528d
    [17] 孙峰. Rietveld方法精修及定量分析研究[D]. 青岛: 中国海洋大学, 2009.

    SUN Feng. Research of Rietveld method in refinement of crystal structure and quantitative phase analysis[D]. Qingdao: Ocean University of China, 2009.
    [18] ZHAO S, LIU X, HUO C, LI Y, WANG J, JIAO H. Surface morphology of Hagg iron carbide (χ-Fe5C2) from ab initio atomistic thermodynamics[J]. J Catal,2012,294:47−53. doi: 10.1016/j.jcat.2012.07.003
    [19] DE S E, CINQUINI F, BEALE A M, SAFONOVA O V, BEEK W V, SAUTET P, WECKHUYSEN B M. Stability and reactivity of ε-χ-θ iron carbide catalyst phases in Fischer-Tropsch synthesis: controlling μc[J]. J Am Chem Soc,2010,132(42):14928−14941. doi: 10.1021/ja105853q
    [20] 刘兴武. 铁碳化合物的制备、物相转变以及费托反应性能研究[D]. 北京: 中国科学院大学, 2016.

    LIU Xing-wu. Preparation, phase transition and properties of iron carbides during Fischer-Tropsch synthesis[D]. Beijing: University of Chinese Academy of Sciences, 2016.
    [21] COHN E M, HPFER L J E. Some thermal reactions of the higher iron carbides[J]. J Chem Phys,1953,21(2):354−359. doi: 10.1063/1.1698884
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  296
  • HTML全文浏览量:  124
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-08
  • 修回日期:  2021-08-21
  • 网络出版日期:  2021-09-19
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回