留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis

LIU Xiao-ling MA Cai-lian ZHAO Wen-tao ZHANG Juan CHEN Jian-gang

刘晓玲, 马彩莲, 赵文涛, 张娟, 陈建刚. 助剂对渗碳熔铁催化剂费托合成的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60159-7
引用本文: 刘晓玲, 马彩莲, 赵文涛, 张娟, 陈建刚. 助剂对渗碳熔铁催化剂费托合成的影响[J]. 燃料化学学报. doi: 10.1016/S1872-5813(21)60159-7
LIU Xiao-ling, MA Cai-lian, ZHAO Wen-tao, ZHANG Juan, CHEN Jian-gang. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60159-7
Citation: LIU Xiao-ling, MA Cai-lian, ZHAO Wen-tao, ZHANG Juan, CHEN Jian-gang. Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(21)60159-7

助剂对渗碳熔铁催化剂费托合成的影响

doi: 10.1016/S1872-5813(21)60159-7
详细信息
  • 中图分类号: O643

Effects of promoters on carburized fused iron catalysts in Fischer-Tropsch synthesis

Funds: The project was financially supported by the National Natural Science Foundation of China (22072175, 21673272) and Beijing Sanju Environmental Protection & New Materials Co., Ltd (SJHT-18038)
More Information
  • 摘要: 研究了K、Ru和La助剂对碳化和未碳化的熔铁催化剂在结构、比表面积、晶相和催化行为上的影响,运用了XRD、XPS、TPD和N2物理吸附-脱附等分析手段对所制备的催化剂进行表征。实验结果表明,无论是否碳化,K助剂的添加都提高了C5+的选择性。助剂Ru使碳化后催化剂活性明显下降,但对未碳化的催化剂影响极小。La助剂的加入由于其包覆了碳化铁,因此,严重抑制了催化剂的碳化和活性。在产物分布上,Ru和La促进了氢气的吸附,提高了甲烷的选择性。K改性后未碳化的催化剂产物分布最优,其中,甲烷选择性为4.04%,C5+选择性为75.84%。
  • Figure  1  N2 physisorption results of the catalysts

    (a): Isotherms of the nitrogen adsorption-desorption curves; (b): BJH pore size distribution curves calculated from the nitrogen desorption isotherms

    Figure  2  XRD patterns of fused iron catalysts (a) carburized by CO; (b): reduced by H2

    Figure  3  XRD patterns of the fused iron catalysts after FTS for 240 h

    Figure  4  XPS spectra of the catalysts: (a) Fe 2p (carburized); (b) Fe 2p (uncarburized); (c) Ru 3p; (d) La 3d

    Figure  5  H2 and CO-TPD profiles of the fused Fe catalysts

    (a): H2-TPD (carburized); (b): H2-TPD (uncarburized); (c): CO-TPD (carburized); (d) CO-TPD (uncarburized)

    Figure  6  CO conversion versus time on stream for fused iron catalysts with different promoters

    Figure  7  CH4 and C5+ selectivity versus time on stream for the catalysts with different promoters

    Figure  8  CO conversion, CH4 and C5+ selectivity versus time on stream for the fused iron catalysts with different promoters (U-La 260 °C for measured activity)

    Figure  9  CO conversion, CH4 and C5+ selectivity for the catalysts with different promoters and pretreatment methods (after 144 h time-on-stream)

    Table  1  Textural properties of the catalysts

    SampleSBETa/(m2·g−1)vporeb/(cm3·g−1)dporec/nm
    C4.800.02622.91
    U3.020.01419.10
    C-K3.580.02747.13
    U-K2.480.02764.37
    C-Ru39.030.03310.70
    U-Ru17.910.05015.03
    C-La10.110.04635.18
    U-La6.540.03217.06
    a: BET surface area, b: Cumulative volume of pores by BJH adsorption, c: Average pore diameter calculated by 4 × vpore/SBET
    下载: 导出CSV
  • [1] BAO J, YANG G, OKADA C. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas[J]. Appl Catal A: Gen,2011,394(1/2):195−200. doi: 10.1016/j.apcata.2010.12.041
    [2] LI S, KRISHNAMOORTHY S, LI A. Promoted iron-based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, and catalytic properties[J]. J Catal,2002,206(2):202−217. doi: 10.1006/jcat.2001.3506
    [3] WU P, SUN J, ABBAS M. Hydrophobic SiO2 supported Fe-Ni bimetallic catalyst for the production of high-calorie synthetic natural gas[J]. Appl Catal A: Gen,2020,590:111302.
    [4] ANDERSON J R. Catalysis : Science and Technology[M]. Berlin: Anderson, 1981.
    [5] POUR A N, SHAHRI S M K, BOZORGZADEH H R. Effect of Mg, La and Ca promoters on the structure and catalytic behavior of iron-based catalysts in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2008,348(2):201−208. doi: 10.1016/j.apcata.2008.06.045
    [6] WANG L, WU B, LI Y. Effects of Ru and Cu promoters on Fischer-Tropsch synthesis over Fe-based catalysts[J]. Chin J Catal,2011,32(3):495−501.
    [7] ZHANG J, ABBAS M, CHEN J. The evolution of Fe phases of a fused iron catalyst during reduction and Fischer-Tropsch synthesis[J]. Catal Sci Technol,2017,7(16):3626−3636. doi: 10.1039/C7CY01001J
    [8] ZHAO L, LIU G, LI C. Effect of La2O3 on a precipitated iron catalyst for Fischer-Tropsch synthesis[J]. Chin J Catal,2009,30(7):637−642. doi: 10.1016/S1872-2067(08)60117-5
    [9] LUQUE R, OSA A R D L, CAMPELO J M. Design and development of catalysts for biomass-to-liquid-Fischer-Tropsch (BTL-FT) processes for biofuels production[J]. Energy Environ Sci,2012,5(1):5186−5202. doi: 10.1039/C1EE02238E
    [10] YU X, ZHANG J, WANG X. Fischer-Tropsch synthesis over methy 1 modified Fe2O3@SiO2 catalysts with low CO2 selectivity[J]. Appl Catal B: Environ,2018,232(1):420−428.
    [11] KUIVILA C S, BUTT J B, STAIR P C. Characterization of surface species on iron synthesis catalysts by X-ray photoelectron spectroscopy[J]. Appl Surf Sci,2016,32(1/2):99−121.
    [12] ZHAO Z, LU W, ZHU H. Tuning the Fischer-Tropsch reaction over CoxMnyLa/AC catalysts toward alcohols: Effects of La promotion[J]. J Catal,2018,361:156−167. doi: 10.1016/j.jcat.2018.02.008
    [13] NIE C, ZHANG H, MA H. Effects of Ce addition on Fe-Cu catalyst for Fischer-Tropsch synthesis[J]. Catal Lett,2019,149(5):1375−1382. doi: 10.1007/s10562-019-02700-2
    [14] WU H, YANG Y, SUO H. Effects of ZrO2 promoter on physic-chemical properties and activity of Co/TiO2 -SiO2 Fischer-Tropsch catalysts[J]. J Mol Catal A: Chem,2015,396:108−119. doi: 10.1016/j.molcata.2014.09.024
    [15] AL-DOSSARY M, FIERRO J L G, SPIVEY J J. Cu promoted Fe2O3/MgO-based Fischer-Tropsch catalysts of biomass-derived syngas[J]. Ind Eng Chem Res,2015,54(3):911−921. doi: 10.1021/ie504473a
    [16] DING M, YANG Y, WU B. Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer–Tropsch synthesis[J]. J Mol Catal A: Chem,2009,303(1/2):65−71. doi: 10.1016/j.molcata.2008.12.016
    [17] MORALES F, DEGROOT F, GIJZEMAN O. Mn promotion effects in Co/TiO Fischer-Tropsch catalysts as investigated by XPS and STEM-EELS[J]. J Catal,2005,230(2):301−308. doi: 10.1016/j.jcat.2004.11.047
    [18] YANG Y, XIANG H W, XU Y. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2004,266(2):181−194. doi: 10.1016/j.apcata.2004.02.018
    [19] TIAN Z, WANG C, YUE J. Effect of a potassium promoter on the Fischer-Tropsch synthesis of light olefins over iron carbide catalysts encapsulated in graphene-like carbon[J]. Catal Sci Technol,2019,9(11):2728−2741. doi: 10.1039/C9CY00403C
    [20] SHI Z, YANG H, GAO P. Effect of alkali metals on the performance of CoCu/TiO2 catalysts for CO2 hydrogenation to long-chain hydrocarbons[J]. Chin J Catal,2018,39(8):1294−1302. doi: 10.1016/S1872-2067(18)63086-4
    [21] XUE Y, DUAN S, CHEN G. Effect of annealing atmosphere on Fischer-Tropsch synthesis performance of Fe/Fe foam structured catalyst[J]. Fuel,2020,262:116570. doi: 10.1016/j.fuel.2019.116570
    [22] WANG W, DING M, MA L. Fe2O3 nanoparticles encapsulated in TiO2 nanotubes for Fischer-Tropsch synthesis: The confinement effect of nanotubes on the catalytic performance[J]. Fuel,2016,164:347−351. doi: 10.1016/j.fuel.2015.09.089
    [23] XU B, FAN Y, ZHANG Y. Pore diffusion simulation model of bimodal catalyst for Fischer-Tropsch synthesis[J]. AIChE J,2005,51(7):2068−2076. doi: 10.1002/aic.10469
    [24] LU F, CHEN X, LEI Z. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2021,281:119521. doi: 10.1016/j.apcatb.2020.119521
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  3
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-24
  • 修回日期:  2021-04-14
  • 网络出版日期:  2021-09-09

目录

    /

    返回文章
    返回