留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance

LIU Mu-yao WANG Jian-yun DUAN Lian LIU Xian ZHANG Lei

刘慕瑶, 王建云, 段炼, 刘宪, 张磊. NiO改性C3N5光催化剂析氢性能研究[J]. 燃料化学学报(中英文), 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4
引用本文: 刘慕瑶, 王建云, 段炼, 刘宪, 张磊. NiO改性C3N5光催化剂析氢性能研究[J]. 燃料化学学报(中英文), 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4
LIU Mu-yao, WANG Jian-yun, DUAN Lian, LIU Xian, ZHANG Lei. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4
Citation: LIU Mu-yao, WANG Jian-yun, DUAN Lian, LIU Xian, ZHANG Lei. Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 243-249. doi: 10.1016/S1872-5813(21)60166-4

NiO改性C3N5光催化剂析氢性能研究

doi: 10.1016/S1872-5813(21)60166-4
详细信息
  • 中图分类号: O643

Nickel oxide modified C3N5 photocatalyst for enhanced hydrogen evolution performance

Funds: The project was supported by the Teaching Reform and Innovation Program of Higher Education Institutions in Shanxi (2020061) and the Teaching Reform and Innovation Program of Taiyuan University of Technology (2019013)
More Information
  • 摘要: 近年来,新型光催化剂氮化碳(C3N5)因其优异的光捕获性能和独特的二维结构备受关注。然而,较高的电子-空穴复合率严重影响其光催化性能。本研究采用水热法成功合成了氧化镍(NiO)改性的C3N5 p-n异质结纳米光催化剂。结果表明,9-Ni/C3N5 纳米光催化剂在可见光照射下表现出优异的析氢性能,其析氢速率可高达357 μmol/(g·h),是纯C3N5的107倍。这主要归因于9-Ni/C3N5 纳米光催化剂形成p-n异质结,有效促进了光生电子-空穴对的分离,从而提高了析氢效率。
  • FIG. 1270.  FIG. 1270.

    FIG. 1270. 

    Figure  1  (a) SEM image of C3N5 nanosheets; (b) SEM image of 9-Ni/C3N5; (c) and (d) TEM images of 9-Ni/C3N5, (e )− (g) the corresponding elemental mapping of C, N and Ni (scale bar: 200 nm)

    Figure  2  XRD patterns (a) and FT-IR spectra (b) for C3N5 and x-Ni/C3N5 composites

    Figure  3  XPS spectra of (a) survey scan, (b) C 1s, (c) N 1s and (d) Ni 2p spectra of 9-Ni/C3N5

    Figure  4  (a) Histogram of the photocatalytic H2 production rate of C3N5 with varied Ni content, (b) recycle experiments of 9-Ni/C3N5 photocatalyst

    Figure  5  PL spectra (a) and TRPL spectra (b) of different samples

    Figure  6  (a) UV-vis absorption spectra, (b) bandgap energy, (c) Mott-Schottky plots and (d) Electrochemical impedance spectra of different samples

    Figure  7  Proposed H2 evolution mechanism by 9-Ni/C3N5 photocatalyst

  • [1] LIAO G F, GONG Y, ZHANG L, GAO H Y, YANG G J, FANG B Z. Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light[J]. Energy Environ Sci,2019,12(7):2080−2147. doi: 10.1039/C9EE00717B
    [2] HU B, CAI F P, CHEN T J, FAN M S, SONG C J, SHI W D. Hydrothermal synthesis g-C3N4/nano-InVO4 nanocomposites and enhanced photocatalystic activity for hydrogen production under visible light irradiation[J]. ACS Appl Mater Interfaces,2015,7(33):18247−18256. doi: 10.1021/acsami.5b05715
    [3] MAO Z Y, CHEN J J, YANG Y F, WANG D J, BIE L J, FAHLMAN B D. Novel g-C3N4/CoO nanocomposites with significantly enhanced visible-light photocatalytic activity for H2 evolution[J]. ACS Appl Mater Interfaces,2017,9(14):12427−12435. doi: 10.1021/acsami.7b00370
    [4] YE S, WANG R, WU M Z, YUAN Y P. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Appl Surf Sci,2015,358:15−17. doi: 10.1016/j.apsusc.2015.08.173
    [5] LI M L, ZHANG L X, FAN X Q, ZHOU Y J, WU M Y, SHI J L. Highly selective CO2 photoreduction to CO over g-C3N4/Bi2WO6 composites under visible light[J]. J Mater Chem A,2015,3(9):5189−5196. doi: 10.1039/C4TA06295G
    [6] FENG W H, ZHANG L X, FANG J Z, LU S Y, WU S X, CHEN Y, FANG Z Q. Improved photodegradation efficiency of 2, 4-DCP through a combined Q3Fe(III)-decorated porous g-C3N4/H2O2 system[J]. Water Air Soil Poll,2017,228(9):373. doi: 10.1007/s11270-017-3564-5
    [7] QIAN X F, WU Y W, KAN M, FANG M Y, YUE D T, ZENG J, ZHAO Y X. FeOOH quantum dots coupled g-C3N4 for visible light driving photo- Fenton degradation of organic pollutants[J]. Appl Catal B: Environ,2018,237:513−520. doi: 10.1016/j.apcatb.2018.05.074
    [8] CUI Y J, ZHANG G G, LIN Z Z, WANG X C. Condensed and low-defected graphitic carbon nitride with enhanced photocatalytic hydrogen evolution under visible light irradiation[J]. Appl Catal B: Environ,2016,181:413−419. doi: 10.1016/j.apcatb.2015.08.018
    [9] DONG G H, ZHAO K, ZHANG L Z. Carbon self-doping induced high electronic conductivity and photoreactivity of g-C3N4[J]. Chem Commun,2012,48:6178−6180. doi: 10.1039/c2cc32181e
    [10] WANG H Y, LI M X, LU Q J, CEN Y M, ZHANG Y Y, YAO S Z. A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: as a superior photocatalyst for degradation of organic pollutant[J]. ACS Sustainable Chem Eng,2019,7(1):625−631. doi: 10.1021/acssuschemeng.8b04182
    [11] QI S Y, FAN Y C, WANG J R, SONG X H, LI W F, ZHAO M W. Metal-free highly efficient photocatalysts for overall water splitting: C3N5 multilayers[J]. Nanoscale,2020,12(1):306−315. doi: 10.1039/C9NR08416A
    [12] KUMAR P, VAHIDZADEH E, THAKUR U K, KAR P, ALAM K M, GOSWAMI A, MANDI N, CUI K, BERNARD G M, MICHAELIS V K, SHANKAR K. C3N5: A low band gap semiconductor containing an azo-linked carbon nitride framework for photocatalytic, photovoltaic and adsorbent applications[J]. J Am Chem Soc,2019,141(13):5415−5436. doi: 10.1021/jacs.9b00144
    [13] JIN Z B, WEI T T, HUANG J Y, LI F Y, YANG Y, XU L. Fabrication of direct Z-scheme heterojunction between Zn0.5Cd0.5S and N-rich graphite carbon nitride for boosted H2 production[J]. Int J Hydrogen Energy,2020,45(43):22711−22721. doi: 10.1016/j.ijhydene.2020.06.093
    [14] VADIVEL S, HARIGANESH S, PAUL B, MAMBA G, PUVIARASU P. Highly active novel CeTi2O6/g-C3N5 photocatalyst with extended spectral response towards removal of endocrine disruptor 2, 4-dichlorophenol in aqueous medium[J]. Colloids Surf A,2020,592(5):124583.
    [15] LI M X, LU Q J, LIU M L, YIN P, WU C Y, LI H T, ZHANG Y Y, YAO S Z. Photoinduced charge separation via the double-electron transfer mechanism in nitrogen vacancies g-C3N5/BiOBr for the photoelectrochemical nitrogen reduction[J]. ACS Appl Mater Interfaces,2020,12(34):38266−38274. doi: 10.1021/acsami.0c11894
    [16] SHI H L, BI J G, BAI C P, WU J B, XU Y, HAN Y, ZHANG X. Nickel ammine complex-derived NiO modified g-C3N4 composites with enhanced visible-light photocatalytic H2 evolution performance[J]. ChemistrySelect,2019,4(27):8095−8103. doi: 10.1002/slct.201901813
    [17] LIU J N, JIA Q H, LONG J L, WANG X X, GAO Z W, GU Q. Amorphous NiO as co-catalyst for enhanced visible-light-driven hydrogen generation over g-C3N4 photocatalyst[J]. Appl Catal B: Environ,2018,222:35−43. doi: 10.1016/j.apcatb.2017.09.073
    [18] HU C, TENG H. Structural features of p-type semiconducting NiO as a co-catalyst for photocatalytic water splitting[J]. J Catal,2010,272(1):1−8. doi: 10.1016/j.jcat.2010.03.020
    [19] CHEN C, LIAO C, HSU K, WU Y, WU J. P-N junction mechanism on improved NiO/TiO2 photocatalyst[J]. Catal Commun,2011,12(14):1307−1310. doi: 10.1016/j.catcom.2011.05.009
    [20] LIN H, CHEN Y, CHEN Y. Water splitting reaction on NiO/InVO4 under visible light irradiation[J]. Int J Hydrogen Energy,2007,32(1):86−92. doi: 10.1016/j.ijhydene.2006.04.007
    [21] SREETHAWONG T, SUZUKI Y, YOSHIKAWA S. Photocatalytic evolution of hydrogen over mesoporous supported NiO photocatalyst prepared by single-step sol-gel process with surfactant template[J]. Int J Hydrogen Energy,2005,30(10):1053−1062. doi: 10.1016/j.ijhydene.2004.09.007
    [22] IWASZUK A, NOLAN M, JIN Q, FUJISHIMA M, TADA H. Origin of the visible-light response of nickel(II) oxide cluster surface modified titanium(IV) dioxide[J]. J Phys Chem C,2013,117(6):2709−2718. doi: 10.1021/jp306793r
    [23] FU Y, LIU C A, ZHU C, WANG H, DOU Y, SHI W, SHAO M, HUANG H, LIU Y, KANG Z. High-performance NiO/g-C3N4 composites for visible-light-driven photocatalytic overall water splitting[J]. Inorg Chem Front,2018,5(7):1646−1652. doi: 10.1039/C8QI00292D
    [24] TZVETKOV G, TSVETKOV M, SPASSOV T. Ammonia-evaporation-induced construction of three-dimensional NiO/g-C3N4 composite with enhanced adsorption and visible light-driven photocatalytic performance[J]. Superlattice Microst,2018,119:122−133. doi: 10.1016/j.spmi.2018.04.048
    [25] LIU T, YANG G, WANG W, WANG C, WANG M, SUN X, XU P, ZHANG J. Preparation of C3N5 nanosheets with enhanced performance in photocatalytic methylene blue (MB) degradation and H2-evolution from water splitting[J]. Environ Res,2020,188:109741. doi: 10.1016/j.envres.2020.109741
    [26] LUO B, SONG R, GENG J, JING D, ZHANG Y. Facile preparation with high yield of a 3D porous graphitic carbon nitride for dramatically enhanced photocatalytic H2 evolution under visible light[J]. Appl Catal B: Environ,2018,238(15):294−301.
    [27] LIN X, XU D, ZHENG J, SONG M, CHE G, WANG Y, YANG Y, LIU C, ZHAO L, CHANG L. Graphitic carbon nitride quantum dots loaded on leaf-like InVO4/BiVO4 nano-heterostructures with enhanced visible-light photocatalytic activity[J]. J Alloys Compd,2016,688(15):891−898.
    [28] WANG X, MA Z, CHAI L, XU L, ZHU Z, HU Y, QIAN J, HUANG S. MOF derived N-doped carbon coated CoP particle/carbon nanotube composite for efficient oxygen evolution reaction[J]. Carbon,2019,141:643−651. doi: 10.1016/j.carbon.2018.10.023
    [29] KONG L, DONG Y, JIANG P, WANG G, ZHANG H, ZHAO N. Light-assisted rapid preparation of a Ni/g-C3N4 magnetic composite for robust photocatalytic H2 evolution from water[J]. J Mater Chem A,2016,4(25):9998−10007. doi: 10.1039/C6TA03178A
    [30] HAN Q, WANG B, ZHAO Y, HU C, QU L. A graphitic-C3N4 “seaweed” architecture for enhanced hydrogen evolution[J]. Angew Chem Int Ed,2015,54(39):11433−11437. doi: 10.1002/anie.201504985
    [31] JIANG Z, CHEN X, LU J, LI Y, WEN T, ZHANG L. Ultrathin Ni(II)-based coordination polymer nanosheets as a co-catalyst for promoting photocatalytic H2 production[J]. Chem Commun,2019,55(46):6499. doi: 10.1039/C9CC02680K
    [32] WEN J, XIE J, ZHANG H, ZHANG A, LIU Y, CHEN X, LI X. Constructing multifunctional metallic Ni interface layers in the g-C3N4 nanosheets/amorphous NiS heterojunctions for efficient photocatalytic H2 generation[J]. ACS Appl Mater Interfaces,2017,9(16):14031−14042. doi: 10.1021/acsami.7b02701
  • 加载中
图(8)
计量
  • 文章访问数:  322
  • HTML全文浏览量:  229
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-09
  • 修回日期:  2021-08-12
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回