留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite

ZHAO Yan-nan FAN Su-bing MA Qing-xiang ZHANG Jian-li ZHAO Tian-sheng

赵雁楠, 范素兵, 马清祥, 张建利, 赵天生. 弱酸性多级孔MFI沸石上甲醇转化制丙烯[J]. 燃料化学学报(中英文), 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5
引用本文: 赵雁楠, 范素兵, 马清祥, 张建利, 赵天生. 弱酸性多级孔MFI沸石上甲醇转化制丙烯[J]. 燃料化学学报(中英文), 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5
ZHAO Yan-nan, FAN Su-bing, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5
Citation: ZHAO Yan-nan, FAN Su-bing, MA Qing-xiang, ZHANG Jian-li, ZHAO Tian-sheng. Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite[J]. Journal of Fuel Chemistry and Technology, 2022, 50(2): 210-217. doi: 10.1016/S1872-5813(21)60175-5

弱酸性多级孔MFI沸石上甲醇转化制丙烯

doi: 10.1016/S1872-5813(21)60175-5
详细信息
  • 中图分类号: O643

Methanol converting to propylene on weakly acidic and hierarchical porous MFI zeolite

Funds: The project was supported by the East-West Cooperation Project of Ningxia Key R&D Plan (2017BY063).
More Information
  • 摘要: 使用葡萄糖辅助模板合成了H-[B,Al]-ZSM-5 沸石并用于催化甲醇转化制丙烯。优越的丙烯选择性和活性持久性关联于有利于丙烯生成的高的弱酸/强酸比例以及有利于改善反应物扩散的防止快速积炭的高的介孔率。较多的位于MFI沸石直/正弦孔道的骨架铝增加了产物丙烯/乙烯比归因于促进的丙烯生成。低的酸密度有助于高的丙烯/乙烯比。B/Al比为2 且(Al2+B2)/Si 比为0.01的HZ5-G-2B 样品用于甲醇制丙烯反应,在原料CH3OH/H2O(1∶1.2) 重时空速为1.8 h−1 、480 °C反应条件下,丙烯选择性为51.6%, ${\rm{C}}_{2-4}^ {=} $烯烃选择性为83.7%,甲醇完全转化。丙烯/乙烯比为2。催化活性保持580 h稳定。
  • FIG. 1266.  FIG. 1266.

    FIG. 1266. 

    Figure  1  SEM and TEM images of synthetic samples

    Figure  2  XRD patterns of synthetic samples

    Figure  3  N2 adsorption isotherms and pore distribution of synthetic samples

    Figure  4  11B NMR spectra of synthetic samples

    Figure  5  27Al NMR spectra of synthetic samples

    Figure  6  Curve fitting of 27Al NMR spectra of synthetic samples

    Figure  7  NH3-TPD profiles of synthetic samples

    Figure  8  Py-FTIR spectra of synthetic samples

    Figure  9  Catalytic activity of synthetic samples for MTP

    Figure  10  TG curves of spent catalyst samples

    Table  1  Textural properties of synthetic samples

    SampleMeasured molar ratio*Crysta-llinity/%BET area/(m2·g−1)Pore volume/(cm3·g−1)Mesoporosity/%
    Si/Al2B/Al(Al2+B2)/Simicromesototalmicromesototal
    HZ5-G-9B 220 5.1 0.030 98 279 58 337 0.12 0.14 0.26 53
    HZ5-G-2B 230 1.3 0.010 95 254 72 326 0.11 0.30 0.41 73
    HZ5-G-1B 224 0.7 0.008 89 295 48 343 0.13 0.23 0.36 63
    HZ5-G 218 0 0.005 96 316 57 373 0.14 0.10 0.22 45
    HZ5-1B 382 33 415 0.17 0.02 0.19 10
    HZ5 220 0 0.005
    *: charged Si/Al2=200, B/Al=9, 2, 1, 0, 0
    下载: 导出CSV

    Table  2  Percentage of deconvoluted peak areas for synthetic samples

    SamplePercentage/%Al56/Al54
    5253545658
    HZ5-G-9B1213204782.04
    HZ5-G-2B812234592.03
    HZ5-G-1B10132542101.68
    HZ5-G12143031121.03
    下载: 导出CSV

    Table  3  Surface acidity of synthetic samples

    SampleTemp./°CAcid amount/(μmol NH3·g−1)W/S
    ratio
    Weak acid density/
    (μmol·m−2)
    Acid/(μmol·g−1)
    weakstrongweakstrongBL
    HZ5-G-9B 170 373 213 38 5.6 0.63 130 3
    HZ5-G-2B 175 374 167 41 4.1 0.51 126 3
    HZ5-G-1B 174 369 139 40 3.5 0.41 94 4
    HZ5-G 168 362 92 42 2.2 0.25 80 1
    下载: 导出CSV

    Table  4  Catalytic activity of synthetic samples for MTP

    SampleTOS/hProduct selectivity/%P/EHTI
    C1${\rm{C}}_{2}^ {=} $C2${\rm{C}}_{3}^ {=} $C3${\rm{C}}_{4}^ {=} $C4${\rm{C}}_{5+} $${\rm{C} }_{{2-4}}^ {=}$
    HZ5-G-9B 480 3.4 25.4 0.3 47.9 3.4 10.4 0.7 7.1 83.7 1.9 0.05
    HZ5-G-2B 580 3.7 22.8 0.3 50.1 2.1 11.6 0.7 6.4 84.5 2.2 0.04
    HZ5-G-1B 230 4.3 24.1 0.5 44.4 3.3 11.4 0.6 7.6 79.9 1.8 0.05
    HZ5-G 80 1.8 25.2 0.6 41.1 4.3 12.6 0.7 13.5 78.9 1.6 0.07
    HZ5 23 6.5 24.9 0.5 38.9 4.9 11.5 0.8 15.7 75.3 1.5 0.08
    下载: 导出CSV
  • [1] HAW J F, SONG W, MARCUS D M, NICHOLAS J B. The mechanism of methanol to hydrocarbon catalysis[J]. Acc Chem Res,2003,36:317−326. doi: 10.1021/ar020006o
    [2] INOUE M, DHUPATEMIYA P, PHATANASRI S, INUI T. Synthesis course of the Ni-SAPO-34 catalyst for methanol-to-olefin conversion[J]. Microporous Mesoporous Mater,1999,28(1):19−24. doi: 10.1016/S1387-1811(98)00278-9
    [3] ZHAO T S, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650. doi: 10.1016/j.catcom.2005.11.009
    [4] LEE K Y, LEE S W, IHM S K. Acid strength control in MFI zeolite for the methanol-to-hydrocarbons(MTH) reaction[J]. Ind Eng Chem Res,2014,53(24):10072−10079.
    [5] PALČIČ A, ORDOMSKY V V, QIN Z, GEORGIEVA V, VALTCHEV V. Tuning zeolite properties for highly efficient synthesis of propylene from methanol[J]. Chem-Eur J,2018,24(50):13136−13149. doi: 10.1002/chem.201803136
    [6] UNNEBERG E, KOLBOE S. H--ZSM-5 as catalyst for methanol reactions[J]. Appl Catal A: Gen,1995,124:345−354. doi: 10.1016/0926-860X(95)00005-4
    [7] CHU C T-W, KUEHL G H, LAGO R M, CHANG C D. lsomorphous substitution in zeolite frameworks II catalytic properties ofZSM-5[J]. J Catal,1985,89:1569−1571.
    [8] YANG Y, SUN C, DU J, YUE Y, HUA W, ZHANG C, SHEN W, XU H. The synthesis of endurable B-Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction[J]. Catal Commun,2012,24(26):44−47.
    [9] YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, IRANDOUKHT A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous Mesoporous Mater,2015,203:41−53.
    [10] LIANG T, CHEN J, QIN Z, LI J, WANG P, WANG S, WANG G, DONG M, FAN W, WANG J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework Aluminum siting[J]. ACS Catal,2016,6:7311−7325. doi: 10.1021/acscatal.6b01771
    [11] TAO J, ZHANG J, FAN S, MA Q, GAO X, ZHAO T S. Effects of boron modification on the activity of HZSM-5 toward MTP[J]. J Fuel Chem Technol,2020,48(9):1105−1111. doi: 10.1016/S1872-5813(20)30074-8
    [12] CUI N, GUO H, ZHOU J, LI L, GUO L, HUA Z. Regulation of framework Al distribution of high-silica hierarchically structured ZSM-5 zeolites by boron-modification and its effect on materials catalytic performance in methanol-to-propylene reaction[J]. Microporous Mesoporous Mater,2020,306:110411. doi: 10.1016/j.micromeso.2020.110411
    [13] HU Z, ZHANG H, WANG L, ZHANG H, ZHANG Y, XU H, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol,2014,4(9):2891−2895. doi: 10.1039/C4CY00376D
    [14] DING J, JIA Y, CHEN P, ZHAO G, LIU Y, LU Y. Thin-felt hollow-B-ZSM-5/SS-fiber catalyst for methanol-to-propylene: toward remarkable stability improvement from mesoporosity-dependent diffusion enhancement[J]. Chem Eng J, 2019, 361: 588−598.
    [15] KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal,2010,269(1):219−228.
    [16] TAO J, ZHANG J, FAN S, ZHAO T S. Cocrystalline synthesis of ZSM-5/ZSM-11 and catalytic activity for methanol to propylene[J]. Cryst Res Technol,2020,55:2000027. doi: 10.1002/crat.202000027
    [17] LIU H, ERNST H, FREUDDE D, SCHEFFLER F, SCHWIEGER W. In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J]. Microporous Mesoporous Mater,2002,54(3):319−330. doi: 10.1016/S1387-1811(02)00392-X
    [18] CHEN T H, WOUTERS B H, GROBET P J. Aluminium coordinations in zeolite mordenite by 27Al multiple quantum MAS NMR spectroscopy[J]. Eur J Inorg Chem,2000,2:281−285.
    [19] YOKOI T, MOCHIZUKI H, NAMBA S, KONDO J N, TATSUMI T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties[J]. J Phys Chem C,2015,119(27):15303. doi: 10.1021/acs.jpcc.5b03289
    [20] LI J, MA H, CHEN Y, XU Z, LI C, YING W. Conversion of methanol to propylene over hierarchical HZSM-5: Effect of Al spatial distribution[J]. Chem Commun,2018,54:6032−6035. doi: 10.1039/C8CC02042F
    [21] RODRÍGUEZ-GONZÁLEZ L, HERMES F, BERTMER M, RODRÍGUEZ-CASTELLÓN E, JIMÉNEZ-LÓPEZ A, SIMON U. The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy[J]. Appl Catal A: Gen,2007,328(2):174−182.
    [22] CHU C T-W, CHANG C D. Isomorphous substitution in zeolite frameworks. 1. acidity of surface hydroxyls in [B]-, [Fe]-, [Ga]-, and [AI]-ZSM-5[J]. J Phys Chem,1985,89(30):1569−1571.
    [23] CHANG C D, CHU C T-W, SOCHA R F. Methanol conversion to olefins over ZSM-5 I. effect of temperature and zeolite SiO2/A12O3[J]. J Catal,1984,86(2):289−296.
    [24] ZHU Q, KONDO J N, SETOYAMA T, YAMAGUCHI M, DOMEN K, TATSUMI T. Activation of hydrocarbons on acidic zeolites: superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts[J]. Chem Commun,2008,71(41):5164−5166.
    [25] KIM S, PARK G, WOO M H, KWAK G, KIM S K. Control of hierarchical structure and framework-Al distribution of ZSM-5 via adjusting crystallization temperature and their effects on methanol conversion[J]. ACS Catal,2019,9:2880−2892.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  262
  • HTML全文浏览量:  94
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-06-23
  • 网络出版日期:  2021-10-29
  • 刊出日期:  2022-02-12

目录

    /

    返回文章
    返回