留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模型化合物反应路径解析淖毛湖褐煤萃取残渣的甲醇醇解机理

杨伟强 毛凯敏 莫文龙 马凤云 魏贤勇 樊星 任铁真

杨伟强, 毛凯敏, 莫文龙, 马凤云, 魏贤勇, 樊星, 任铁真. 基于模型化合物反应路径解析淖毛湖褐煤萃取残渣的甲醇醇解机理[J]. 燃料化学学报(中英文), 2022, 50(4): 396-407. doi: 10.1016/S1872-5813(21)60178-0
引用本文: 杨伟强, 毛凯敏, 莫文龙, 马凤云, 魏贤勇, 樊星, 任铁真. 基于模型化合物反应路径解析淖毛湖褐煤萃取残渣的甲醇醇解机理[J]. 燃料化学学报(中英文), 2022, 50(4): 396-407. doi: 10.1016/S1872-5813(21)60178-0
YANG Wei-qiang, MAO Kai-ming, MO Wen-long, MA Feng-yun, WEI Xian-yong, FAN Xin, REN Tie-zhen. Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 396-407. doi: 10.1016/S1872-5813(21)60178-0
Citation: YANG Wei-qiang, MAO Kai-ming, MO Wen-long, MA Feng-yun, WEI Xian-yong, FAN Xin, REN Tie-zhen. Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path[J]. Journal of Fuel Chemistry and Technology, 2022, 50(4): 396-407. doi: 10.1016/S1872-5813(21)60178-0

基于模型化合物反应路径解析淖毛湖褐煤萃取残渣的甲醇醇解机理

doi: 10.1016/S1872-5813(21)60178-0
基金项目: 新疆维吾尔自治区引进高层次人才天池计划,煤炭加工与高效洁净利用教育部重点实验室开放基金和新疆维吾尔自治区重点实验室开放课题(2018D04008)资助
详细信息
    作者简介:

    杨伟强(1991-)男,陕西宝鸡人,在读硕士研究生。Tel: 18599683551,E-mail: 1911331966@qq.com

    通讯作者:

    E-mail: mowenlong@xju.edu.cn

    wei_xianyong@163.com

  • 中图分类号: TQ530

Mechanism analysis of methanol alcoholysis of Naomaohu lignite extraction residue based on model compound reaction path

Funds: The project was supported by Tianchi Project for Introducing Highlevel Talents to Xinjiang Uyghur Autonomous Region (China), Key Laboratory of Coal Processing and Efficient Utilization from Ministry of Education and Open Project of Key Laboratory of Xinjiang Uygur Autonomous Region (2018D04008)
  • 摘要: 以淖毛湖褐煤(NL)超声辅助萃取残渣(ER)作为研究对象,在300 ℃下采用甲醇对ER进行醇解,并考察添加KOH对醇解过程的影响。通过GC-MS分析MP(未添加KOH)和MPKOH(添加KOH)两种醇解产物的组成信息。选取苯甲酸苄酯(BB)和乙酸苯酯(PA)作为ER的两种模型化合物(MER),醇解后得到产物BBP、BBPKOH、PAP和PAPKOH。结果表明,MPKOH收率高达93.39%,而MP收率仅有5.25%,说明KOH的加入明显提高了醇解产物的收率。MP中酚类化合物、酯类化合物和烷烃类化合物的相对含量分别为17.92%、34.83%和5.98%,而MPKOH中的上述三类化合物相对含量分别为38.85%、10.17%和8.71%,在KOH存在下醇解过程发生了酯交换或酯的还原反应,还伴有一定程度的烷基化反应。模型化合物醇解产物分析结果显示,BBP中以苯甲酸甲酯和苯甲醇为主,而BBPKOH中苯甲酸甲酯基本消失,且苯甲醇相对含量占91.85%;PAP中仅检测到了酚类化合物,且苯酚相对含量占87.97%,而PAPKOH中甲基取代的苯甲醚和苯酚含量高达85.64%。两种模型化合物的醇解过程均表明,未添加KOH的醇解过程主要发生酯交换或酯还原反应,添加KOH后,不但加速了上述反应,还强化了后续产物与甲醇间的烷基化反应。
  • FIG. 1461.  FIG. 1461.

    FIG. 1461.  FIG. 1461.

    图  1  ER和MER的醇解与分析过程

    Figure  1  Methanolysis and analysis of ER and MER (a): process of obtaining ER and methanolysis; (b): methanolysis of BB; (c): methanolysis of PA

    图  2  MP与MPKOH的总离子流色谱原图

    Figure  2  Original total ion chromatograms of MP and MPKOH from GC/MS analysis

    图  3  MP的总离子流色谱祥图

    Figure  3  Detailed total ion chromatogram of MP

    图  4  MPKOH的总离子流色谱祥图

    Figure  4  Detailed total ion chromatogram of MPKOH

    图  5  MP和MPKOH的族组成分布

    Figure  5  Distribution of group components in MP and MPKOH from GC/MS analysis

    图  6  MP和MPKOH中酚类和酯类化合物分类图

    Figure  6  Classification of phenols and esters identified in MP and MPKOH with GC/MS

    图  7  BBP和BBPKOH的总离子流色谱图

    Figure  7  Total ion chromatograms of BBP and BBPKOH from GC/MS analysis

    1  BB未添加KOH条件下的醇解可能路径

    1  Possible methanolysis path of BB without KOH

    2  BB添加KOH条件下的醇解可能路径

    2  Possible methanolysis path of BB with KOH

    图  8  PAP和PAPKOH的总离子流色谱原图

    Figure  8  Original total ion chromatograms of PAP and PAPKOH from GC/MS analysis

    图  9  PAPKOH的总离子流色谱祥图

    Figure  9  Detailed total ion chromatogram of PAPKOH

    3  生成PAP的反应路径

    3  Possible methanolysis path of PA without KOH

    4  生成PAPKOH的反应路径

    4  Possible methanolysis path of PA with KOH

    表  1  淖毛湖煤样的工业分析和元素分析[14]

    Table  1  Proximate and ultimate analyses of NL[14]

    Proximate analysis w/%Ultimate analysis wdaf/%Raito
    MadAdVdafCHNSO*H/CO/C
    7.1210.4949.2071.895.170.880.7421.320.860.22
    *: by difference
    下载: 导出CSV

    表  2  MP中检测到的化合物

    Table  2  Compounds detected in MP

    PeakCompoundRC/%
    1methyl pentanoate3.18
    5N-propylacetamide0.57
    75-(propan-2-ylidene)cyclopenta-1,3-diene0.17
    10dodecanamine0.08
    11N-isopropyl-3-phenylpropanamide0.24
    20undecane5.98
    262-methylpropan-1-amine0.11
    345-methoxy-2,3,4-trimethylphenol0.65
    393-(tert-butyl)-4-methoxyphenol9.64
    40dimethyl isophthalate0.57
    42N1,N1-diethylbenzene-1,4-diamine7.45
    44dimethyl nonanedioate3.92
    46dimethyl decanedioate5.66
    522-propionylbenzoic acid5.14
    531-octylcyclohex-1-ene12.89
    54methyl palmitate5.79
    56methyl stearate3.61
    582,2'-methylenebis(6-tert-butyl-4-methylphenol)7.63
    59methyl 11-docosenoate6.83
    61methyl lignocerate9.29
    622-ethylacridine10.62
    下载: 导出CSV

    表  3  MPKOH中检测到的化合物

    Table  3  Compounds detected in MPKOH

    PeakCompoundRC/%
    2 L-homoserine 1.70
    3 2,4-dimethylpentan-3-ol 2.74
    4 (methylsulfinyl)methane 0.88
    6 5-methyl-2-phenyl-1H-indole 0.52
    8 ethyl 2-(benzo[d][1,3]dioxol-5-yl)acetate 0.41
    9 2-((dimethylamino)methyl)-6-methoxyphenol 0.30
    12 2-methylcyclohexan-1-ol 0.54
    13 4-(1-methylpiperidin-4-yl)benzene-1,2-diol 0.26
    14 2,6-dimethylocta-2,4,6-triene 0.43
    15 piperidin-3-ol 0.43
    16 1,3-dioxolane 0.03
    17 1,1,3,3-tetramethylguanidine 1.24
    18 butyraldehyde 0.45
    19 acrylamide 0.76
    20 undecane 2.79
    21 N1-(3-aminopropyl)propane-1,3-diamine 0.88
    22 2-butyloctan-1-ol 0.77
    23 2,6-dimethylphenol 0.75
    24 2,3,4,6-tetramethylphenol 3.90
    25 3,3-dimethylpiperidine 0.84
    27 2,3,5-trimethylphenol 9.65
    28 (2,2-dimethylpropylidene)cyclohexane 0.93
    29 2-(tert-butyl)-6-methylphenol 1.89
    30 1-butyl-4-ethylbenzene 1.45
    31 2-isopropyl-5-methylphenol 2.39
    32 2-ethyl-4,5-dimethylphenol 1.86
    33 N1,N1-diethylbenzene-1,4-diamine 5.26
    35 2-(1-hydroxybut-2-en-1-ylidene) cyclohexan-1-one 1.31
    36 1-(2-hydroxy-5-methylphenyl)ethan-1-one 5.12
    37 3-methoxy-2,5,6-trimethyl-phenol 0.26
    38 2-(tert-butyl)-4,6-dimethylphenol 11.67
    39 2-(tert-butyl)-4-methoxyphenol 9.21
    41 2,2-dimethyl-2,3-dihydrobenzofuran-3,7-diol 6.40
    43 icosane 4.62
    45 2-(hexadecyloxy)ethan-1-ol 0.19
    47 tridecane 1.00
    48 2-octyldodecan-1-ol 0.44
    49 heptadec-15-enal 0.57
    50 undecane 0.18
    51 octadecane 0.12
    55 2-hydroxycyclopentadecan-1-one 2.49
    57 bis(2-ethylhexyl) adipate 9.76
    58 6,6'-methylenebis(2-(tert-butyl)-4-methylphenol) 2.46
    60 4-(2-aminopropyl)phenol 0.20
    下载: 导出CSV

    表  4  BBP和BBPKOH中GC-MS检测到的化合物

    Table  4  Compounds detected in BBP and BBPKOH

    CompoundRC/%
    BBPBBPKOH
    Benzaldehyde 2.66 3.05
    (Methoxymethyl)benzene 0.49 1.68
    Phenylmethanol 38.19 91.85
    Methyl benzoate 51.63 2.20
    (Dimethoxymethyl)benzene 3.59 0.61
    1,2-diphenylethane 2.64
    1,2-diphenylethene 0.14
    Benzyl benzoate 0.66
    Cyclohexylmethanol 0.55
    m-tolylmethanol 0.06
    下载: 导出CSV

    表  5  PAP中GC-MS检测到的化合物

    Table  5  Compounds detected in PAP

    Retention time /minCompoundRC /%
    5.626phenol87.97
    7.017o-cresol5.25
    8.2792,6-dimethylphenol0.31
    9.0372-hydroxybenzyl alcohol0.88
    28.632,2'-methylenebis-phenol5.59
    下载: 导出CSV

    表  6  PAPKOH中检测到的化合物

    Table  6  Compounds detected in PAPKOH

    PeakCompoundRC/%
    1 anisole 6.67
    2 1-methoxy-2-methylbenzene 1.79
    3 1-methoxy-4-methylbenzene 4.66
    4 o-cresol 0.11
    5 2-methoxy-1,3-dimethylbenzene 0.52
    6 p-cresol 0.14
    7 1-methoxy-2,4-dimethylbenzene 10.23
    8 3,5-dimethylphenol 7.32
    9 2-methoxy-1,3,5-trimethylbenzene 9.44
    10 2,3,6-trimethylphenol 52.51
    11 thymol 0.09
    12 (4-(tert-butyl)phenyl)methanol 0.17
    13 1-(2-hydroxy-4,5-dimethylphenyl)ethan-1-one 0.08
    14 2-allyl-4-methylphenol 0.13
    15 2-ethyl-4,5-dimethylphenol 0.93
    16 2-isopropyl-5-methylphenol 0.43
    17 1-(2,3,4-trimethylphenyl)ethan-1-one 0.07
    18 2-methyl-6-propylphenol 0.01
    19 methyl 2-hydroxy-5-methylbenzoate 0.12
    20 2-methyl-4-propylphenol 0.04
    21 2-(2-methoxy-5-methylphenyl)propanal 0.04
    22 5-propylbenzo[d][1,3]dioxole 0.23
    23 1-(sec-butyl)-4-methoxybenzene 0.20
    24 4-methyl-2-(pent-3-yn-2-yl)phenol 0.06
    25 1,2,3,4,5,6-hexamethylbenzene 0.10
    26 1,5,7-trimethyl-1,2,3,4-tetrahydronaphthalene 0.02
    27 4-(methoxymethyl)-2,6-dimethylphenol 0.39
    28 1-(benzo[d][1,3]dioxol-5-yl)propan-2-one 0.04
    29 9H-xanthene-9-carboxylic acid 0.23
    30 9H-xanthene 0.54
    31 9,9-dimethyl-9H-fluoren-3-ol 0.09
    32 phenyl(o-tolyl)methanone 0.30
    33 (2,5-dimethylphenyl)(phenyl)methanone 0.27
    34 9H-xanthen-9-one 0.05
    35 1-methoxy-2-(4-methoxybenzyl)benzene 0.19
    36 4,4'-dimethoxy-2,2'-dimethyl-1,1'-biphenyl 0.17
    37 methyl 2-phenoxybenzoate 0.04
    38 2,2'-(propane-2,2-diyl)bis(methoxybenzene) 0.57
    39 4,4'-methylenebis(2,6-dimethylphenol) 0.03
    40 4-(methoxycarbonyl)benzyl 4-methylbenzoate 0.39
    41 4,4'-methylenebis(2,6-dimethylphenol) 0.25
    42 1,2-bis(4-methoxyphenyl)ethan-1-one 0.19
    43 3-hydroxy-2-(4-methylbenzoyl)phenyl 2-methoxybenzoate 0.04
    44 1-(phenylethynyl)-4-styrylbenzene 0.10
    下载: 导出CSV

    表  7  PAPKOH中检测到的化合物

    Table  7  Compounds detected in PAPKOH

    PeakCompositionStructureRC/%PeakCompositionStructureRC/%
    1anisole6.67102,3,6-trimethylphenol52.51
    21-methoxy-2-methylbenzene1.7911thymol0.09
    31-methoxy-4-methylbenzene4.66142-allyl-4-methylphenol0.13
    4o-cresol0.11152-ethyl-4,5-dimethylphenol0.93
    52-methoxy-1,3-dimethylbenzene0.52162-isopropyl-5-methylphenol0.43
    6p-cresol0.14182-methyl-6-propylphenol0.01
    71-methoxy-2,4-dimethylbenzene10.23202-methyl-4-propylphenol0.04
    83,5-dimethylphenol7.32244-methyl-2-(pent-3-yn-2-yl) phenol0.06
    下载: 导出CSV
  • [1] WU J H, LIU J Z, ZHANG X, WANG Z H, ZHOU J H, CEN K F. Chemical and structural changes in Ximeng lignite and its carbon migration during hydrothermal dewatering[J]. Fuel,2015,148:139−144. doi: 10.1016/j.fuel.2015.01.102
    [2] LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel,2015,153:176−182. doi: 10.1016/j.fuel.2015.02.117
    [3] CONG X S, ZONG Z M, ZHOU Y, LI M, WANG W L, LI F G, ZHOU J, FAN X, ZHAO Y P, WEI X Y. Isolation and identification of 3-ethyl-8-methyl-2, 3-dihydro-1 H-cyclopenta [a] chrysene from Shengli lignite[J]. Energy Fuels,2014,28(10):6694−6697. doi: 10.1021/ef402403y
    [4] LU H Y, Wei X Y, YU R, PENG Y L, QI X Z, QIE L M, WEI Q, LV J, ZHONG Z M, ZHAO W, ZHAO Y P, NI Z H, WU L. Sequential thermal dissolution of Huolinguole lignite in methanol and ethanol[J]. Energy Fuels,2011,25(6):2741−2745. doi: 10.1021/ef101734f
    [5] YU X Y, WEI X Y, LI Z K, ZANG D D, ZONG Z M. Two-step depolymerization of Zhaotong lignite in ethanol[J]. Fuel,2017,196(15):391−397.
    [6] LIU F J, WEI X Y, ZHU Y, GUI J, WANG Y G, FAN X, ZHAO Y P, ZONG Z M, ZHAO W. Investigation on structural features of Shengli lignite through oxidation under mild conditions[J]. Fuel,2013,109:316−324. doi: 10.1016/j.fuel.2013.01.020
    [7] ROSS D S, BLESSING J E. Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol[J]. Fuel,1979,58(6):438−442. doi: 10.1016/0016-2361(79)90085-1
    [8] LI S, ZONG Z M, LI Z K, WANG S K, YANG Z, XU M L, SHI C, WEI X Y, WANG Y G. Sequential thermal dissolution and alkanolyses of extraction residue from Xinghe lignite[J]. Fuel Process Technol,2017,167:425−430. doi: 10.1016/j.fuproc.2017.07.025
    [9] LI Z K, ZONG Z M, YANG Z S, YAN H L, FAN X, WEI X Y. Sequential thermal dissolution of Geting bituminous coal in low-boiling point solvents[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2014,36(23):2579−2586. doi: 10.1080/15567036.2013.869639
    [10] PAN C X, WEI X Y, SHUI H F, WANG Z C, GAO J, WEI C, GAO X Z, ZONG Z M. Investigation on the macromolecular network structure of Xianfeng lignite by a new two-step depolymerization[J]. Fuel,2013,109:49−53. doi: 10.1016/j.fuel.2012.11.059
    [11] LEI Z P, LIU M X, SHUI H F, WANG Z C, WEI X Y. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. Fuel Process Technol,2010,91(7):783−788. doi: 10.1016/j.fuproc.2010.02.014
    [12] LIU F J, WEI X Y, LI W T, GUI J, LI P, WANG Y G, XIE R L, ZONG Z M. Methanolysis of extraction residue from Xianfeng lignite with NaOH and product characterizations with different spectrometries[J]. Fuel Process Technol,2015,136:8−16. doi: 10.1016/j.fuproc.2014.07.012
    [13] LI S, ZONG Z M, WANG S K, XU M L, WEI X Y, LIU F J. Compositional features of the extracts from the methanolysis of Xilingol No. 6 lignite[J]. Fuel,2019,246:516−520. doi: 10.1016/j.fuel.2018.11.133
    [14] 毛凯敏, 莫文龙, 马凤云, 马亚亚, 王越, 魏贤勇, 樊星. 淖毛湖褐煤分级萃取可溶有机质的组成结构特征及萃余残渣的热转化性能[J]. 燃料化学学报,2021,49(10):1389−1401. doi: 10.1016/S1872-5813(21)60117-2

    (MAO Kai-min, MO Wen-long, MA Feng-yun, MA Ya-ya, WANG Yue, WEI Xian-yong, FAN Xing. Composition and structure characteristics of soluble organic matter from Naomaohu lignite by sequential extraction and thermal conversion performance of the corresponding residue[J]. J Fuel Chem Technol,2021,49(10):1389−1401. doi: 10.1016/S1872-5813(21)60117-2
    [15] XU M L, WEI X Y, YU X Y, LIU F J, WU Q C, LI S, WANG S K, LIU G H, LIU Z Q, GUO X H, ZHANG Y Y, ZONG Z M. Insight into molecular compositions of soluble species from sequential thermal dissolution of Liuhuanggou bituminous coal and its extraction residue[J]. Fuel,2019,253:762−771. doi: 10.1016/j.fuel.2019.05.045
    [16] GAO Y, WEI X Y, LI Y J, BAI J J, KANG Y H, LIU G H, MA X R, LI X, LU C Y, BAI H C, ZONG Z M. Investigation on the composition of soluble portions from the extraction residue of Hanglaiwan subbituminous coal by thermal dissolution and alkanolyses[J]. Fuel,2021,306:121747. doi: 10.1016/j.fuel.2021.121747
    [17] 夏同成, 魏贤勇, 刘卫兵, 卿宇, 路瑶, 宗志敏, 许斌, 王世杰, 李春启. 锡林浩特褐煤的超临界甲醇解研究[J]. 武汉科技大学学报,2009,32(6):627−630.

    XIA Tong-cheng, WEI Xian-yong, LIU Wei-bing, QinYu, LU Yao, Zong Zhi-ming, XU Bing, WANG Shi-jie, LI Chong-qi. Supercritical methanolysis of Xilinhaote lignite[J]. J Wuhan Univ Sci Technol,2009,32(6):627−630.
    [18] KANG Y H, WEI X Y, ZHAN X Q, LI Y J, LIU G H, MA X R, LI X, BAI H C, LI Z N, YAN H J, ZONG Z M. Deep catalytic hydroconversion of straw-derived bio-oil to alkanes over mesoporous zeolite Y supported nickel nanoparticles[J]. Renewable Energy,2021,173:876−885. doi: 10.1016/j.renene.2021.04.003
    [19] 李白雪, 薛锋, 王建, 丁恩勇. 聚碳酸酯在乙二醇中的可控醇解[J]. 塑料工业,2015,43(3):127−131. doi: 10.3969/j.issn.1005-5770.2015.03.022

    LI Bai-xue, XUE Feng, WANG Jian, Ding En-yong. Controllable glycolysis of polycarbonate in ethylene glycol[J]. China Plastics Ind,2015,43(3):127−131. doi: 10.3969/j.issn.1005-5770.2015.03.022
    [20] YIN J N, LIN X C, WANG C H, DAI J Z, WANG Y G, XU Z G. Identification of the transformation features of heteroatomic compounds in a low rank coal by combining thermal extraction and various analytical approaches[J]. Fuel,2020,270:117480. doi: 10.1016/j.fuel.2020.117480
    [21] SHUI H F, MA X Q, YANG L, SHUI T, PAN C X, WANG Z C, LEI Z P, REN S B, KANG S G, CHARLES XU C B. Thermolysis of biomass-related model compounds and its promotion on the thermal dissolution of coal[J]. J Energy Ins,2017,90(3):418−423. doi: 10.1016/j.joei.2016.04.001
    [22] WANG T M, ZONG Z M, LIU F J, LUI C, LV J H, JING L, ZANG D D, QU M, GUI J, LIU X X, WEI X Y, WEI Z H, LI Y. Investigation on compositional and structural features of Xianfeng lignite through sequential thermal dissolution[J]. Fuel Process Technol,2015,138:125−132. doi: 10.1016/j.fuproc.2015.04.029
    [23] MONDRAGON F, ITOH H, OUCHI K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel,1982,61(11):1131−1134. doi: 10.1016/0016-2361(82)90198-3
    [24] GAO H S, ZONG Z M, TENG D G, LI J H, WEI X Y, GUO Q J, ZHAO T S, BAI H C, KANG Y H. Catalytic o-methylation of phenols and its application in converting crude phenols in a low-temperature coal tar to mesitol and durenol[J]. Fuel,2021,288:119681. doi: 10.1016/j.fuel.2020.119681
  • 加载中
图(14) / 表(7)
计量
  • 文章访问数:  404
  • HTML全文浏览量:  194
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 修回日期:  2021-11-01
  • 录用日期:  2021-11-02
  • 网络出版日期:  2022-01-10
  • 刊出日期:  2022-04-26

目录

    /

    返回文章
    返回