留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自修复聚乙烯醇/细菌纤维素水凝胶电解质制备及应用

陶雪钰 马文斌 韩晓东 朱克虎 叶世防 沙恒 郭琳 魏贤勇 许崇 朱慎刚

陶雪钰, 马文斌, 韩晓东, 朱克虎, 叶世防, 沙恒, 郭琳, 魏贤勇, 许崇, 朱慎刚. 自修复聚乙烯醇/细菌纤维素水凝胶电解质制备及应用[J]. 燃料化学学报(中英文), 2022, 50(3): 304-313. doi: 10.1016/S1872-5813(21)60179-2
引用本文: 陶雪钰, 马文斌, 韩晓东, 朱克虎, 叶世防, 沙恒, 郭琳, 魏贤勇, 许崇, 朱慎刚. 自修复聚乙烯醇/细菌纤维素水凝胶电解质制备及应用[J]. 燃料化学学报(中英文), 2022, 50(3): 304-313. doi: 10.1016/S1872-5813(21)60179-2
TAO Xue-yu, MA Wen-bin, HAN Xiao-dong, ZHU Ke-hu, YE Shi-fang, SHA Heng, GUO Lin, WEI Xian-yong, XU Chong, ZHU Shen-gang. Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 304-313. doi: 10.1016/S1872-5813(21)60179-2
Citation: TAO Xue-yu, MA Wen-bin, HAN Xiao-dong, ZHU Ke-hu, YE Shi-fang, SHA Heng, GUO Lin, WEI Xian-yong, XU Chong, ZHU Shen-gang. Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte[J]. Journal of Fuel Chemistry and Technology, 2022, 50(3): 304-313. doi: 10.1016/S1872-5813(21)60179-2

自修复聚乙烯醇/细菌纤维素水凝胶电解质制备及应用

doi: 10.1016/S1872-5813(21)60179-2
基金项目: 国家自然科学基金(52173015)资助
详细信息
    通讯作者:

    E-mail: taoxueyu@cumt.edu.cn

    wei_xianyong@163.com

  • 中图分类号: O646

Preparation and application of self-healing polyvinyl alcohol/bacterial cellulose hydrogel electrolyte

Funds: The project was supported by the National Natural Science Foundation of China (52173015).
  • 摘要: 以聚乙烯醇(PVA)、细菌纤维素(BC)和硫酸为原料,采用物理交联的冻融循环法制备了聚乙烯醇/细菌纤维素复合水凝胶电解质;经过冻融循环后,聚乙烯醇和细菌纤维素形成了大量的分子间氢键,赋予复合水凝胶良好的自修复性能和力学性能。探讨了纤维素含量对水凝胶电解质力学性能和离子电导率的影响,结果表明,BC含量为0.6%时复合水凝胶自修复性能最好,力学性能最强,断裂强度高达0.41 MPa,离子电导率最高达到138.9 mS/cm,一次修复后离子电导率仍然可达84.1 mS/cm ,修复率高达74%。在该自修复聚乙烯醇/细菌纤维素水凝胶电解质表面原位聚合聚苯胺电极,设计组装柔性一体化超级电容器,研究了苯胺浓度对超级电容器性能的影响。结果表明,苯胺浓度为0.2 mol/L时,超级电容器器件在0.2 mA/cm2的电流密度下达到580.8 mF/cm2的高比电容、出色的能量密度(20.17 μW·h/cm2)和功率密度(50 μW/cm2),且一次修复后的电容保持率达到66%,显示出良好的自修复性能,以及保持结构完整性和电化学稳定性的巨大潜力。这些发现表明了自修复聚乙烯醇/细菌纤维素复合水凝胶电解质在柔性可穿戴储能装置中巨大的应用前景。
  • FIG. 1385.  FIG. 1385.

    FIG. 1385.  FIG. 1385.

    图  1  PVA/BC复合水凝胶电解质制备过程

    Figure  1  Preparation of PVA/BC hydrogel electrolyte

    图  2  PVA/BC复合水凝胶(a)柔韧性和可加工性,(b)应力-应变曲线,(c)离子电导率和含水率

    Figure  2  Flexibility and machinability (a), stress-strain curves (b), ionic conductivity and moisture content (c) of PVA/BC composite hydrogel electrolyte

    图  3  (a) PVA,(b) BC和(c) 6-PBHE的扫描图; (d) 6-PBHE、PVA和BC的红外光谱谱图;(e)6-PBHE,PVA和BC的X射线衍射谱图

    Figure  3  SEM images of (a) PVA, (b) BC and (c) 6-PBHE. (d) FTIR spectra of 6-PBHE, PVA and BC. (e) XRD of 6-PBHE, PVA and BC

    图  4  PVA/BC复合水凝胶电解质自修复性能:(a) PVA/BC复合水凝胶电解质自修复过程,(b) 自修复机制示意图,水凝胶电解质修复前后的(c)阻抗图和(d)离子电导率

    Figure  4  Self-healing performance of PVA/BC composite hydrogel electrolyte (a) Schematic diagram of PVA/BC composite hydrogel electrolyte self-healing process and (b) self-healing mechanism. (c) Nyquist diagram and (d) ionic conductivity before and after hydrogel electrolyte self-healing.

    图  5  PANI-PBHE柔性一体化超级电容器的组装

    Figure  5  Preparation of PANI-PBHE flexible all-in-one supercapacitors

    图  6  不同苯胺浓度的x-PANI-6-PBHE超级电容器的 (a) CV曲线,(b) GCD曲线,(c) 比电容,(d) Nyquist图,(e) 倍率性能和(f) 拉贡图;(g) 2-PANI-6-PBHE超级电容器的循环稳定性

    Figure  6  (a) CV curves, (b) GCD curves, (c) areal specific capacitance, (d) Nyquist plots, (e) rate capability and (f) Ragone plots of x-PANI-6-PBHE SCs with different aniline concentrations; (g) cyclic stability of 2-PANI-6-PBHE SC

    图  7  2- PANI-6-PBHE超级电容器的自修复性能 (a) 2-PANI-6-PBHE超级电容器的自修复过程2-PANI-6-PBHE超级电容器的 (b) CV (c) GCD (d) 阻抗图以及 (e) 基于不同测试的修复率

    Figure  7  Self-healing Performance of 2-PANI-6-PBHE SC (a) : Schematic diagram of 2-PANI-6-PBHE SC device self-heal process; (b) : CV curves; (c): GCD curves; (d): Nyquist plots and (e) healing efficiency based on different tests of original and healed 2-PANI-6-PBHE SC

    表  1  本工作与其他超级电容器电化学性能比较

    Table  1  Comparison of area specific capacitance between our SC device and other supercapacitors

    ElectrodeElectrolyteSpecific capacitance/
    (mF·cm−2)
    Energy density/
    (μW·h·cm−2)
    Power density/
    (μW·cm−2)
    Reference
    PANI PVA/BC/H2SO4 581 20.17 50 this work
    SWCNT-PANI PVA/H2SO4 15.8 NA NA [23]
    Carbon sponge PANa/Fe3 /LiCl 212.5 0.21/(mW·h·cm−2) 25.4/(mW·cm−2) [28]
    PPy PVA/H2SO4 58.8 6.94 500 [29]
    PANI PVA/PA 85.3 NA NA [30]
    PANI/PVA PVA/PA 260.1 14.3 97.5 [31]
    PANI/ H2SO4/ HClO4 PVA/H2SO4 149.3 13.0 0.40/(mW·cm−2) [32]
    下载: 导出CSV
  • [1] DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics,2019,25(4):1419−1445. doi: 10.1007/s11581-019-02874-0
    [2] SELVARAJ T, PERUMAL V, KHOR S F, ANTHONY L S, GOPINATH S C B, MOHAMED N M. The recent development of polysaccharides biomaterials and their performance for supercapacitor applications[J]. Mater Res Bull,2020,126:110839.
    [3] 黄珊珊, 赵小燕, 谢凤梅, 曹景沛, 魏贤勇, 宝田恭之. 双电层电容器用新型无灰煤(HyperCoal)基活性炭的制备[J]. 燃料化学学报,2014,42(5):539−544.

    HUANG Shan-shan, ZHAO Xiao-yan, XIE Feng-mei, CAO Jing-pei, WEI Xian-yong, TAKARADA Takayuki. Preparation of HyperCoal-based activated carbons for electric double layer capacitor[J]. J Fuel Chem Technol,2014,42(5):539−544.
    [4] YE T T, LI L H, ZHANG Y. Recent progress in solid electrolytes for energy storage devices[J]. Adv Funct Mater,2020,30(29):2000077.
    [5] 杜惟实, 吕耀康, 蔡志威, 张诚. 基于三维多孔石墨烯/含钛共轭聚合物复合多孔薄膜的柔性全固态超级电容器[J]. 物理化学学报,2021,33(9):1828−1837.

    DU Wei-shi, LV Yao-kang, CAI Zhi-wei, ZHANG Cheng. Flexible all-solid-state supercapacitor based on three-dimensional porous graphene/titanium-containing copolymer composite film[J]. Acta Phys-Chim Sin,2021,33(9):1828−1837.
    [6] HUANG Y, ZHU M S, HUANG Y, PEI Z X, LI H F, WANG Z F, XUE Q, ZHI C Y. Multifunctional energy storage and conversion devices[J]. Adv Mater,2016,28(38):8344−8364. doi: 10.1002/adma.201601928
    [7] GUO K, YU N, HOU Z Q, HU L T, MA Y, LI H Q, ZHAI T Y. Smart supercapacitors with deformable and healable functions[J]. J Mater Chem A,2017,5(1):16−30.
    [8] CHEN X X, DAM M A, ONO K, MAL A, SHEN H B, NUTT S R, SHERAN K, WUDL F. A thermally re-mendable cross-linked polymeric material[J]. Science,2002,295(5560):1698−1702. doi: 10.1126/science.1065879
    [9] JIN Y H, Yu C, DENMAN R J, ZHANG W. Recent advances in dynamic covalent chemistry[J]. Chem Soc Rev,2013,42(16):6634−6654. doi: 10.1039/c3cs60044k
    [10] NAKAHATA M, TAKASHIMA Y, YAMAGUCHI H, HARADA A. Redox-responsive self-healing materials formed from host-guest polymers[J]. Nat Commun,2011,511.
    [11] VOORHAAR L, HOOGENBOOM R. Supramolecular polymer networks: Hydrogels and bulk materials[J]. Chem Soc Rev,2016,45(14):4013−4031. doi: 10.1039/C6CS00130K
    [12] YU K, TAYNTON P, ZHANG W, DUNN M L, QI H J. Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers[J]. RSC Adv,2014,4(89):48682−48690. doi: 10.1039/C4RA06543C
    [13] CANADELL J, GOOSSENS H, KLUMPERMAN B. Self-healing materials based on disulfide links[J]. Macromolecules,2011,44(8):2536−2541. doi: 10.1021/ma2001492
    [14] CHAO A, NEGULESCU J, ZHANG D H. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent[J]. Macromolecules,2016,49(17):6277−6284. doi: 10.1021/acs.macromol.6b01443
    [15] LEE D H, HEO G, PYO K H, KIM Y, KIM J W. Mechanically robust and healable transparent electrode fabricated via vapor-assisted solution process[J]. ACS Appl Mater Interfaces,2016,8(12):8129−8136. doi: 10.1021/acsami.6b01099
    [16] PYO K H, LEE D H, KIM Y, KIM J W. Extremely rapid and simple healing of a transparent conductor based on Ag nanowires and polyurethane with a Diels–Alder network[J]. J Mater Chem C,2016,4(5):972−977. doi: 10.1039/C5TC04030B
    [17] CHEN D D, WANG D R, YANG Y, HUANG Q Y, ZHU S J, ZHENG Z J. Self ‐ healing materials for next ‐ generation energy harvesting and storage devices[J]. Adv Energy Mater,2017,7(23):1700890. doi: 10.1002/aenm.201700890
    [18] SUN X X, LUO C H, LUO F L. Preparation and properties of self-healable and conductive PVA-agar hydrogel with ultra-high mechanical strength[J]. Eur Polym J,2020,124:109465. doi: 10.1016/j.eurpolymj.2019.109465
    [19] WU G F, JIN K Y, LIU L, ZHANG H X. A rapid self-healing hydrogel based on PVA and sodium alginate with conductive and cold-resistant properties[J]. Soft Matter,2020,16(13):3319−3324. doi: 10.1039/C9SM02455G
    [20] HERNANDEZ R, SARAFIAN A, LOPEZ D, MIGANGOS C. Viscoelastic properties of poly(vinyl alcohol) hydrogels and ferrogels obtained through freezing-thawing cycles[J]. Polymer,2004,45(16):5543−5549. doi: 10.1016/j.polymer.2004.05.061
    [21] WONG K K H, HUTTER J L, ZINKE-ALLMANG M, WAN W K. Physical properties of ion beam treated electrospun poly(vinyl alcohol) nanofibers[J]. Eur Polym J,2009,45(5):1349−1358. doi: 10.1016/j.eurpolymj.2009.02.002
    [22] WU Z Y, LIANG H W, CHEN L F, HU B C, YU S H. Bacterial cellulose: A robust platform for design of three dimensional carbon-based functional nanomaterials[J]. Accounts Chem Res,2016,49(1):96−105. doi: 10.1021/acs.accounts.5b00380
    [23] ZHAO N N, WU F, XING Y, QU W J, CHEN N, SHANG Y X, YAN M Y, LI Y J, LI L, CHEN R J. Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries[J]. ACS Appl Mater Inter,2019,11(17):15537−15542. doi: 10.1021/acsami.9b00758
    [24] ZHANG X F, MA X F, HOU T, GUO K C, YIN J Y, WANG Z G, SHU L, HE M, YAO J F. Inorganic salts induce thermally reversible and anti‐freezing Cellulose hydrogels[J]. Angew Chem Int Ed,2019,58(22):7366−7370. doi: 10.1002/anie.201902578
    [25] CAMPANELLA A, DHLER D, BINDER W H. Self ‐ healing in supramolecular polymers[J]. Macromol Rapid Comm,2018,39(17):1700739. doi: 10.1002/marc.201700739
    [26] GUO Y, ZHENG K Q, WAN P B. A flexible stretchable hydrogel electrolyte for healable all-in-one configured supercapacitors[J]. Small,2018,14(14):1704497. doi: 10.1002/smll.201704497
    [27] MA W B, ZHU K H, YE S F, WANG Y, GUO L, TAO X Y, GUO L T, FAN H L, LIU Z S, ZHU Y B, WEI X Y. A self-healing hydrogel electrolyte towards all-in-one flexible supercapacitors[J]. J Mater Sci: Mater Electron,2021,32:20445−20460. doi: 10.1007/s10854-021-06555-5
    [28] XIA L Y, HUANG L, QING Y, ZHANG X Q, WU Y Q, JIANG W P, LU X Y. In situ filling of a robust carbon sponge with hydrogel electrolyte: A type of omni-healable electrode for flexible supercapacitors[J]. J Mater Chem A,2020,8(16):7746−7755. doi: 10.1039/D0TA01764G
    [29] YIN B S, ZHANG S W, KE K, WANG Z B. Advanced deformable all-in-one hydrogel supercapacitor based on conducting polymer: Toward integrated mechanical and capacitive performance[J]. J Alloy Compd,2019,805:1044−1051. doi: 10.1016/j.jallcom.2019.07.144
    [30] WANG Y H, LV C, JI G C, HU R F, ZHENG J P. An all-in-one supercapacitor with high stretchability via a facile strategy[J]. J Mater Chem A,2020,8(17):8255−8261. doi: 10.1039/D0TA00757A
    [31] LAI F L, FANG Z M, CAO L, LI W, LIN Z D, ZHANG P. Self-healing flexible and strong hydrogel nanocomposites based on polyaniline for supercapacitors[J]. Solid State Ionics,2020,26(6):1−11.
    [32] HOU L Y, ZHI X M, ZHANG W Y, ZHOU H H. Boosting the electrochemical properties of polyaniline by one-step co-doped electrodeposition for high performance flexible supercapacitor applications[J]. J Electroanal Chem,2020,863:114064. doi: 10.1016/j.jelechem.2020.114064
  • 2021-D029--支撑文件-中文(1).docx
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  2457
  • HTML全文浏览量:  302
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-24
  • 修回日期:  2021-11-01
  • 录用日期:  2021-11-02
  • 网络出版日期:  2022-01-17
  • 刊出日期:  2022-03-28

目录

    /

    返回文章
    返回