留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

煤热解挥发物对炼焦煤塑性体渗透性的调控研究

郭江 王美君 申岩峰 孔娇 常丽萍 鲍卫仁 谢克昌

郭江, 王美君, 申岩峰, 孔娇, 常丽萍, 鲍卫仁, 谢克昌. 煤热解挥发物对炼焦煤塑性体渗透性的调控研究[J]. 燃料化学学报(中英文), 2022, 50(6): 724-734. doi: 10.1016/S1872-5813(21)60194-9
引用本文: 郭江, 王美君, 申岩峰, 孔娇, 常丽萍, 鲍卫仁, 谢克昌. 煤热解挥发物对炼焦煤塑性体渗透性的调控研究[J]. 燃料化学学报(中英文), 2022, 50(6): 724-734. doi: 10.1016/S1872-5813(21)60194-9
GUO Jiang, WANG Mei-jun, SHEN Yan-feng, KONG Jiao, CHANG Li-ping, BAO Wei-ren, XIE Ke-chang. Regulation of permeability of plastic layer of coking coal by volatiles from coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 724-734. doi: 10.1016/S1872-5813(21)60194-9
Citation: GUO Jiang, WANG Mei-jun, SHEN Yan-feng, KONG Jiao, CHANG Li-ping, BAO Wei-ren, XIE Ke-chang. Regulation of permeability of plastic layer of coking coal by volatiles from coal pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 724-734. doi: 10.1016/S1872-5813(21)60194-9

煤热解挥发物对炼焦煤塑性体渗透性的调控研究

doi: 10.1016/S1872-5813(21)60194-9
基金项目: 国家自然科学基金(U1910201和21878208),山西省自然科学基金重点项目(201901D111001(ZD))和国家留学基金委(202006930015)资助
详细信息
    通讯作者:

    Tel: 0351-6010482, E-mail: wangmeijun@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ530.2

Regulation of permeability of plastic layer of coking coal by volatiles from coal pyrolysis

Funds: The project was supported by National Natural Science Foundation of China (U1910201, 21878208), Shanxi Province Science Foundation for Key Program (201901D111001(ZD)) and China Scholarship Council (202006930015)
  • 摘要: 本研究以低挥发分烟煤C1和高挥发分烟煤C2为研究对象(以下煤样简称为C1和C2),引入褐煤L1和C2在两个温度下热解脱除部分挥发物的半焦作为对照,设计单种煤、混合煤/半焦和分层渗透性实验,结合热重和基式流动度分析,揭示了炼焦煤塑性体渗透性受挥发物释放行为的影响。研究结果表明,低挥发分烟煤C1存在塑性体低渗透性平台期,高挥发分烟煤C2塑性体的渗透性达到最低值后迅速改善,挥发物传质驱动力和阻力的差异导致了两种煤塑性体渗透性的差异;C2会增强挥发物的传质驱动力且热解后半焦颗粒成为塑性体惰性组分,同时也提供部分可转移氢,既改善塑性体渗透性又不破坏其稳定性;软化温度前C2释放的富氢挥发物促进C1塑性体低渗透性的形成并达到最大值;热塑性温区内C2释放的挥发物帮助维持C1塑性体的低渗透性平台期;延长C2挥发物反应消耗部分富氢挥发物,有利于改善C1塑性体的渗透性。
  • FIG. 1593.  FIG. 1593.

    FIG. 1593.  FIG. 1593.

    图  1  样品区煤样堆叠方式示意图

    Figure  1  Schematic diagram of stacking mode of coal samples in sample zone

    图  2  C1和C2的热失重速率(DTG)、基式流动度(GF)和渗透性(PD)的关联

    Figure  2  Relationship between weight loss rate (DTG), Gieseler’s fluidity (GF) and permeability (PD) for C1 and C2 coals

    图  3  L1、C2、C2-390和C2-475的热失重速率(DTG)和渗透性(PD)分析

    Figure  3  Analyses of weight loss rate (DTG) and permeability (PD) of L1, C2, C2-390, C2-475 samples

    图  4  C1与L1、C2、C2-390和C2-475混合煤的渗透性(PD)和热失重速率(DTG)分析

    Figure  4  Analyses of the permeability (PD) and weight loss rate (DTG) of binary blended coals from C1 with L1, C2, C2-390 and C2-475

    图  5  C1和L1、C2分层实验中渗透性(PD)的变化

    Figure  5  Change on the permeability (PD) in the layered experiments of C1 with L1 and C2

    图  6  C1与C2、C2-390和C2-475分层实验中的渗透性(PD)比较

    Figure  6  Comparison among the permeability (PD) in the layered experiments of C1 and C2, C2-390 and C2-475

    表  1  煤样的基础煤质分析

    Table  1  Basic properties of coal samples

    Coal sampleC1C2L1
    Proximate analysis
    w/%
    Ad 10.70 7.38 22.80
    Vdaf 21.39 36.09 44.82
    FCad 69.72 57.94 35.48
    Ultimate analysis
    wdaf/%
    C 88.88 85.75 71.63
    H 4.78 5.34 4.66
    N 2.06 1.65 1.17
    S 0.66 0.96 9.59
    O* 3.62 6.30 12.95
    Reflectance of vitrinite Rran 1.52 0.79
    ad: air dry basis; d: dry basis; daf: dry-and-ash-free basis; *: by difference; Rran-the mean random reflectance of vitrinite
    下载: 导出CSV

    表  2  煤样的基式流动度特征参数

    Table  2  Characteristic parameters of Gieseler fluidity of coal samples

    SampleTemperature /℃PRMF /ddpm
    ISTMFTRST
    C14254704977274
    C23884294779028141
    下载: 导出CSV

    表  3  L1、C2、C2-390和C2-475的最大挥发物释放速率温度

    Table  3  tmax of L1, C2, C2-390 and C2-475 samples

    Sampletmax/℃
    L1414
    C2446
    C2-390451
    C2-475571
    下载: 导出CSV
  • [1] NOMURA S, ARIMA T. The effect of volume change of coal during carbonization in the direction of coke oven width on the internal gas pressure in the plastic layer[J]. Fuel,2001,80(9):1307−1315. doi: 10.1016/S0016-2361(00)00217-9
    [2] BARRIOCANAL C, HAYS D, PATRICK J W, WALKER A. A laboratory study of the mechanism of coking pressure generation[J]. Fuel,1998,77(7):729−733. doi: 10.1016/S0016-2361(97)00242-1
    [3] CASAL M D, DÍAZ-FAES E, ALVAREZ R, DÍEZ M A, BARRIOCANAL C. Influence of the permeability of the coal plastic layer on coking pressure[J]. Fuel,2006,85(3):281−288. doi: 10.1016/j.fuel.2005.06.009
    [4] JENKINS D R. Plastic layer permeability estimation using a model of gas pressure in a coke oven[J]. Fuel,2001,80(14):2057−2065. doi: 10.1016/S0016-2361(01)00074-6
    [5] KOCH A, GRUBER R, CAGNIANT D, PAJAK J, KRZTON A, DUCHÈNE J M. A physicochemical study of carbonization phases. Part I. Tars migration and coking pressure[J]. Fuel Process Technol,1995,45(2):135−153. doi: 10.1016/0378-3820(95)00037-8
    [6] FLORENTINO-MADIEDO L, DÍAZ-FAES E, BARRIOCANAL C. The effect of briquette composition on coking pressure generation[J]. Fuel,2019,258:116128. doi: 10.1016/j.fuel.2019.116128
    [7] FERNÁNDEZ A M, BARRIOCANAL C, ALVAREZ R. The effect of additives on coking pressure and coke quality[J]. Fuel,2012,95:642−647. doi: 10.1016/j.fuel.2011.11.046
    [8] FLORENTINO-MADIEDO L, CASAL D, DÍAZ-FAES E, BARRIOCANAL C. Effect of sawdust addition on coking pressure produced by two low vol bituminous coals[J]. J Anal Appl Pyrolysis,2017,127:369−376. doi: 10.1016/j.jaap.2017.07.013
    [9] SOLOMON P R, HAMBLEN D G, CARANGELO R M, SERIO M A, DESHPANDE G V. General model of coal devolatilization[J]. Energy Fuels,1988,2(4):405−422. doi: 10.1021/ef00010a006
    [10] GRINT A, MEHANI S, TREWHELLA M, CROOK M J. Role and composition of the mobile phase in coal[J]. Fuel,1985,64(10):1355−1361. doi: 10.1016/0016-2361(85)90334-5
    [11] GRAY V R. The role of explosive ejection in the pyrolysis of coal[J]. Fuel,1988,67(9):1298−1304. doi: 10.1016/0016-2361(88)90054-3
    [12] DUFFY J J, MAHONEY M R, STEEL K M. Influence of thermoplastic properties on coking pressure generation: Part 1 – A study of single coals of various rank[J]. Fuel,2010,89(7):1590−1599. doi: 10.1016/j.fuel.2009.08.031
    [13] DUFFY J J, MAHONEY M R, STEEL K M. Influence of coal thermoplastic properties on coking pressure generation: Part 2 – A study of binary coal blends and specific additives[J]. Fuel,2010,89(7):1600−1615. doi: 10.1016/j.fuel.2009.08.035
    [14] DUFFY J J, SCHOLES O, MAHONEY M R, STEEL K M. Influence of thermoplastic properties on coking pressure generation: Part 3 – Evidence and role of pore coalescence in the mechanism for pressure generation[J]. Fuel,2013,103:711−718. doi: 10.1016/j.fuel.2012.08.022
    [15] STEEL K M, DIAZ M C, DUFFY J J, SNAPE C E, MAHONEY M R. Influence of thermoplastic properties on coking pressure generation: Part IV – Further evidence of the role of bubble coalescence in the mechanism for pressure generation[J]. Fuel,2014,129:102−110. doi: 10.1016/j.fuel.2014.03.035
    [16] VAN KREVELEN D W. Coal: Typology, Physics, Chemistry, Constitution[M]. Amsterdam: Elsevier, 1993.
    [17] LOISON R, FOCH P, BOYER A. Coke: Quality and Production[M]. Kent: Elsevier, 2014.
    [18] SAITO Y, MIYAMOTO Y, ONO Y, NUMAZAWA Y, MATSUO S, MATSUSHITA Y, AOKI H, HAYASHIZAKI H. Effect of volatile matter and thermoplastic components on softening and swelling behavior in carbonization of coal[J]. ISIJ Int,2018,58(4):660−666. doi: 10.2355/isijinternational.ISIJINT-2017-607
    [19] BISWAS P, PANDA J N, NAG D, CHOUGALE N, CHANDALIYA V K, GHOSH G, DASH P S, MEIKAP B C. Hydrogen evolution during devolatilization to predict coking potential of metallurgical coals[J]. Energy Fuels,2017,31(2):1091−1099. doi: 10.1021/acs.energyfuels.6b01704
    [20] MOCHIZUKI Y, ONO Y, TSUBOUCHI N. Evolution profile of gases during coal carbonization and relationship between their amounts and the fluidity or coke strength[J]. Fuel,2019,237:735−744. doi: 10.1016/j.fuel.2018.09.086
    [21] MOCHIZUKI Y, NAGANUMA R, UEBO K, TSUBOUCHI N. Some factors influencing the fluidity of coal blends: Particle size, blend ratio and inherent oxygen species[J]. Fuel Process Technol,2017,159:67−75. doi: 10.1016/j.fuproc.2017.01.017
    [22] MOCHIZUKI Y, NAGANUMA R, TSUBOUCHI N. Influence of inherently present oxygen-Functional groups on coal fluidity and coke strength[J]. Energy Fuels,2018,32(2):1657−1664. doi: 10.1021/acs.energyfuels.7b03774
    [23] MOCHIZUKI Y, ONO Y, UEBO K, TSUBOUCHI N. The fate of sulfur in coal during carbonization and its effect on coal fluidity[J]. Int J Coal Geol,2013,120:50−56. doi: 10.1016/j.coal.2013.09.007
    [24] CASAL M D, CANGA C S, DÍEZ M A, ALVAREZ R, BARRIOCANAL C. Low-temperature pyrolysis of coals with different coking pressure characteristics[J]. J Anal Appl Pyrolysis,2005,74(1/2):96−103. doi: 10.1016/j.jaap.2004.10.012
    [25] NOMURA S, MAHONEY M, FUKUDA K, KATO K, BAS A L, MCGUIRE S. The mechanism of coking pressure generation I: Effect of high volatile matter coking coal, semi-anthracite and coke breeze on coking pressure and plastic coal layer permeability[J]. Fuel,2010,89(7):1549−1556. doi: 10.1016/j.fuel.2009.08.001
    [26] 项茹, 薛改凤, 张雪红, 陈鹏. 不同粒度气煤和瘦煤参与配煤炼焦比较[J]. 煤炭转化,2010,33(3):59−62. doi: 10.3969/j.issn.1004-4248.2010.03.015

    XIANG Ru, XUE Gai-feng, ZHANG Xue-hong, CHEN Peng. Comparing on the different size of gas coal and lean coal used into coking-blending[J]. Coal Convers,2010,33(3):59−62. doi: 10.3969/j.issn.1004-4248.2010.03.015
    [27] 李文广, 申岩峰, 郭江, 孔娇, 王美君, 常丽萍. 长焰煤分选组分对高硫炼焦煤热解硫变迁及焦反应性的调控[J]. 燃料化学学报,2021,49(7):881−889. doi: 10.1016/S1872-5813(21)60034-8

    LI Wen-guang, SHEN Yan-feng, GUO Jiang, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of flotation fractions of long-flame coal on regulation of sulfur and coke reactivity during pyrolysis of high-sulfur coking coal[J]. J Fuel Chem Technol,2021,49(7):881−889. doi: 10.1016/S1872-5813(21)60034-8
    [28] MASTALERZ M, DROBNIAK A, HOWER J C. Changes in chemistry of vitrinite in coal through time: Insights from organic functional group characteristics[J]. Int J Coal Geol,2021,235:103690. doi: 10.1016/j.coal.2021.103690
    [29] NEAVEL R C. Coal Plasticity Mechanism: Inferences from Liquefaction Studies[M]. Newyork: Academic Press, 1982.
    [30] 田继林. 玉米芯挥发分对褐煤热解过程及其产物的影响[D]. 太原: 太原理工大学, 2015.

    TIAN Ji-lin. Effect of interaction between corncob volatile and lignite on their products during pyrolysis[D]. Taiyuan: Taiyuan University of Technology, 2015.
    [31] MCMILLEN D F, MALHOTRA R, NIGENDA S E. The case for induced bond scission during coal pyrolysis[J]. Fuel,1989,68(3):380−386. doi: 10.1016/0016-2361(89)90106-3
    [32] SHI L, CHENG X, LIU Q, LIU Z. Reaction of volatiles from a coal and various organic compounds during co-pyrolysis in a TG-MS system. Part 1. Reaction of volatiles in the void space between particles[J]. Fuel,2018,213:37−47. doi: 10.1016/j.fuel.2017.10.083
    [33] SHI L, CHENG X, LIU Q, LIU Z. Reaction of volatiles from a coal and various organic compounds during co-pyrolysis in a TG-MS system. Part 2. Reaction of volatiles in the free gas phase in crucibles[J]. Fuel,2018,213:22−36. doi: 10.1016/j.fuel.2017.10.086
    [34] QIU S, ZHANG S, WU Y, QIU G, SUN C, ZHANG Q, DANG J, WEN L, HU M, XU J, ZHU R, BAI C. Structural transformation of fluid phase extracted from coal matrix during thermoplastic stage of coal pyrolysis[J]. Fuel,2018,232:374−383. doi: 10.1016/j.fuel.2018.05.136
    [35] WANG Q, WANG M, WANG H, KONG J, XIE W, WANG J, CHANG L, BAO W. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal[J]. Fuel Process Technol,2021,212:106601. doi: 10.1016/j.fuproc.2020.106601
    [36] WANG M, WANG Q, LI T, KONG J, SHEN Y, CHANG L, XIE W, BAO W. Catalytic upgrading of coal pyrolysis volatiles by porous carbon materials derived from the blend of biochar and coal[J]. ACS Omega,2021,6(5):3800−3808. doi: 10.1021/acsomega.0c05467
    [37] 李挺, 王倩, 申岩峰, 靳鑫, 孔娇, 王美君, 常丽萍. 过滤介质对低阶煤热解焦油气反应行为的影响研究[J]. 燃料化学学报,2021,49(3):257−264.

    LI Ting, WANG Qian, SHEN Yan-feng, JIN Xin, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Effect of filter media on gaseous tar reaction during low-rank coal pyrolysis[J]. J Fuel Chem Technol,2021,49(3):257−264.
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  164
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 修回日期:  2021-12-26
  • 录用日期:  2022-01-17
  • 网络出版日期:  2022-01-28
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回