留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高硫煤热解过程活性氢/氧对有机硫变迁行为影响研究述评

张文静 程亚楠 孔娇 王美君 常丽萍 鲍卫仁

张文静, 程亚楠, 孔娇, 王美君, 常丽萍, 鲍卫仁. 高硫煤热解过程活性氢/氧对有机硫变迁行为影响研究述评[J]. 燃料化学学报(中英文), 2022, 50(6): 652-663. doi: 10.1016/S1872-5813(21)60198-6
引用本文: 张文静, 程亚楠, 孔娇, 王美君, 常丽萍, 鲍卫仁. 高硫煤热解过程活性氢/氧对有机硫变迁行为影响研究述评[J]. 燃料化学学报(中英文), 2022, 50(6): 652-663. doi: 10.1016/S1872-5813(21)60198-6
ZHANG Wen-jing, CHENG Ya-nan, KONG Jiao, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of active hydrogen and oxygen on organic sulfur transformation behavior during pyrolysis of high sulfur coal: A review[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 652-663. doi: 10.1016/S1872-5813(21)60198-6
Citation: ZHANG Wen-jing, CHENG Ya-nan, KONG Jiao, WANG Mei-jun, CHANG Li-ping, BAO Wei-ren. Effects of active hydrogen and oxygen on organic sulfur transformation behavior during pyrolysis of high sulfur coal: A review[J]. Journal of Fuel Chemistry and Technology, 2022, 50(6): 652-663. doi: 10.1016/S1872-5813(21)60198-6

高硫煤热解过程活性氢/氧对有机硫变迁行为影响研究述评

doi: 10.1016/S1872-5813(21)60198-6
基金项目: 国家自然科学基金(21808152, 21878208, U1910201)资助
详细信息
    通讯作者:

    E-mail: kongjiao@tyut.edu.cn

    lpchang@tyut.edu.cn

  • 中图分类号: TQ643.1

Effects of active hydrogen and oxygen on organic sulfur transformation behavior during pyrolysis of high sulfur coal: A review

Funds: The project was supported by the National Natural Science Foundation of China (21808152, 21878208, U1910201).
  • 摘要: 随着优质煤资源的消耗,高硫煤的清洁高效转化备受关注,尤其是高硫炼焦煤中有机硫的调控至关重要。煤热解过程中,有机硫的变迁始于煤大分子结构中C–S键的断裂和含硫自由基的稳定,活性氢/氧是影响其转化赋存形态的重要因素。研究表明,煤在富氢/氧氛围下热解或与生物质、含氧有机物共热解的体系中,含有的活性氢/氧可弱化有机硫的C–S键,促进其断裂并及时结合生成的含硫自由基,促进煤中硫分向气相变迁,减少了含硫自由基与煤基质的二次反应。同时,高挥发分煤与高硫煤共热解过程中,相对丰富的挥发分中的活性氢/氧也会影响高硫煤中有机硫的变迁,降低焦炭中的硫含量,这为煤中硫分定向调控提供了理论基础。
  • FIG. 1586.  FIG. 1586.

    FIG. 1586.  FIG. 1586.

    图  1  含硫化合物的热解迁移行为[11]

    Figure  1  Sulfur transformation behavior of sulfur-containing compounds[11]

    图  2  热解和加氢热解后硫在产物中的分布[20]

    Figure  2  Sulfur distribution after pyrolysis and hydropyrolysis[20]

    图  3  不同氛围下热解含硫气体的生成量[42]

    Figure  3  Amount of sulfur-containing gases during pyrolysis under different atmosphere [42]

    图  4  不同条件下热解YZ煤的脱硫率及半焦产率[57]

    Figure  4  Desulfurization and char yield of YZ-coal pyrolysis under different conditions [57]

    图  5  混煤焦中硫含量[63]

    Figure  5  Content of sulfur form in coal blend cokes [63]

    BC2: high sulfur blend coal; HVC: high volatile coal

    表  1  不同形态有机硫的热分解温度

    Table  1  Thermal decomposition temperature of different forms of organic sulfur

    Sulfur formDecomposition temp. /℃
    Mercaptan 200−300
    Aliphatic sulfide 300−500
    Aromatic sulfide 500−700
    Thiophenic >900
    下载: 导出CSV

    表  2  煤在富氢氛围下热解的脱硫效果

    Table  2  Desulfurization effect of coal pyrolysis under hydrogen-enriched atmosphere

    AtmosphereCoalPyrolysis conditionsDesulfurization
    rate
    Sulfur
    transformation
    sample characteristicsreactortemperature
    /℃
    heating rate
    /(℃·min−1
    holding time
    /min
    heating time
    /min
    gas flow rate
    /(mL·min−1
    pressure
    /MPa
    H2YZ bituminous coal[12]200 mg
    <74 μm
    pressurized TGA80010450321.00% higher than N2 atmospherein H2 atmosphere, 65% sulfur transform to the gas phase, while in N2,80% sulfur transform to the liquid phase
    H2YZ bituminous coal[20, 21]10 g
    60−100 mesh
    pressurized
    fixed bed
    650101000317.30% higher than N2 atmospherethiophenic sulfur can be partially removed in H2 atmosphere
    H2HM
    lignite[20, 21]
    19.70% higher than N2 atmosphere
    H2DT[22]2 gfixed bed5502031004.6% higher than N2 atmosphere
    10%CH4-N2YZ DT YM HLH[19]50 mg
    <100 mesh
    micro-fixed
    bed
    10005200CH4 inhibits the evolution of sulfur-containing gases <600 ℃ but promotes the formation of H2S at temperatures above 800 ℃
    H2WB[23]10 g
    <0.125 mm
    fixed bed75015156019.10%the forms and contents of sulfur in char are similar after pyrolysis in H2 and CH4
    CH421.62%
    Coke oven gasIBC[24]50 g
    <200 mesh
    fixed bed55030−40100−15035.00%
    HHC[24]31.92%
    10% H2O-ArLPS[25]100 mg 53−75 μmfixed bed80015150014.20% higher than Ar atmospherethe addition of steam above 500 ℃ promoted the decomposition of thiophenic
    下载: 导出CSV

    表  3  煤与生物质共热解特性参数

    Table  3  Co-pyrolysis characteristics of coal, biomass and blends

    BiomassCoalCoal content/%tv/℃tmax sawdust/℃tmax coal/℃
    Rice
    straw
    HLH[35] 0 300.2 341.7
    50 301.6 351.6 456.0
    65 301.7 352.2 459.2
    80 303.7 352.7 462.9
    90 317.2 353.5 464.1
    100 399.7 463.2
    Cornstalk BC[36] 0 184 309
    20 198 314 510
    40 201 316 508
    60 207 318 504
    80 211 310 511
    100 215 517
    tv: initial decomposition temperature; tmax: temperature at maximum decomposition rate
    下载: 导出CSV

    表  4  煤与生物质共热解脱硫效果

    Table  4  Desulfurization effect of coal and biomass co-pyrolysis

    biomassCoalPyrolysis conditionsDesulfurization
    effect
    Sulfur
    transformation
    biomass
    to coal
    mass ratio
    coal sizebiomass
    size
    reactorsample
    mass
    temperature
    /℃
    heating rate
    /(℃·min−1
    holding time/mingas flow rate
    /(mL·min−1
    CornstalkBS/XW ZZ/CD ZLS[37]1∶10.2−3 mm<3 mmrotary furnace1 kg/h800−160025−35with the increase of temperature, the coal rank decreases and the addition of cornstalk increases, desulfurization rate increases
    CornstalkBC[36]45:550.18−0.25 mmfixed bed5 g8191560100the proportion of sulfur
    in char is 3.02% lower than the calculated value
    co-pyrolysis promote sulfur in coal release as H2S and COS
    White strawWB[38]1∶1<0.125 mm<1 mmfixed bed10 g850155organic sulfur removal rate is 33.16%the pore structure of co-pyrolysis char is orderly and regular and the pore diameter is large, which is conducive to the sulfur release
    1∶22010organic sulfur removal rate is 23.4%
    Rice huskJN[31]7∶3<75
    μm
    fixed bed2 g500157100compared with coal pyrolysis, organic sulfur removal rate increase 6.28%co-pyrolysis is beneficial to the escape of aliphatic sulfur and sulfoxide sulfur
    Sawdust1∶9700increase 7.28%
    Rice huskND[31]3∶7500increase 5.55%
    Sawdust7∶3500increase 9.44%
    SawdustCF
    lignite[29]
    1∶1
    1∶3
    1∶7
    0.13−0.18 mmfixed bed2 g90010300the theoretically calculated desulfurization rate is higher than its experimental valueduring co-pyrolysis, the mineral can react with sulfur-containing gas
    SawdustMaria
    coal[39]
    1∶1
    2∶1
    3∶1
    fixed bed6001086the amount of sulfur released during the co-pyrolysis is higher than it was expectedthe biomass favours the release of H2S during the thermal treatment
    Olive stones
    下载: 导出CSV

    表  5  煤在富氧氛围下热解的脱硫效果

    Table  5  Desulfurization effect of coal pyrolysis under oxygen-enriched atmosphere

    AtmosphereCoalPyrolysis conditionsDesulfurization
    rate
    Char yieldSulfur
    transformation
    sample characteristicsreactortemperature
    /℃
    heating rate
    /(℃·min−1
    holding time /mingas flow rate
    / (mL·min−1
    N2
    2.5%O2-N2

    5.5%O2-N2
    8.5%O2-N2
    HZ[46] 6 g 80−100 mesh fluidized bed 400−800 25 increases with with the increase of oxygen concentration decreases with the increase
    of oxygen concentration, especially when oxygen concentration exceeds 5.5%
    the proportion of sulfur in tar increases with oxygen concentration, except 800 ℃
    N2
    0.6%O2-N2

    1.1%O2-N2

    2.1%O2-N2
    YM
    DT [47, 48]
    15 g 0.15−0.25 mm fluidized bed 500−800 30 0.16−0.20
    m3/h
    not remarkable decrease when the oxygen content is lower than 1.1%, in 2.1%O2-N2 less char yield is obtained
    75%CO2-Ar PS[42] 1 g 0.154−0.258 mm fixed bed 900 10 300 5.44% higher than Ar atmosphere 2.01% lower than Ar atmosphere H2S, COS and SO2 are all relatively high under pure CO2 atmosphere, while under other three CO2 atmospheres most of sulfur in the gas phase is H2S
    85%CO2-Ar 6.06% higher than Ar atmosphere 5.59% lower than Ar atmosphere
    CO2 10.43% higher than Ar atmosphere 8.76% lower than Ar atmosphere
    3%O2-Ar 15.06% higher than Ar atmosphere 28.36% lower than Ar atmosphere
    CO2 YZ[49] 1 g fixed bed 1000 10 180 30.73% higher than Ar atmosphere 25.01% lower than Ar atmosphere the maximum evolution peak temperature of H2S and SO2 decreases
    JX[49] 20.71% higher than Ar atmosphere 14.15% lower than Ar atmosphere
    XZ bituminous coal[50] 10 mg <100 μm TG-FTIR 700−100 10/30/50/70 0.5 80 CO2 does not influence the starting temperature of volatile release, but enhance the volatile releasing rate
    YM[51] 1 g 0.154–0.258 mm fixed bed 1000 10 180 8.95% higher than Ar atmosphere 24.39% lower than Ar atmosphere CO2 is beneficial to the decomposition of organic sulfur at higher temperature
    PS[51] 15.68% higher than Ar atmosphere 19.81% lower than Ar atmosphere
    下载: 导出CSV
  • [1] SHEN Y F, HU Y F, WANG M J, BAO W R, CHANG L P, XIE K H. Speciation and thermal transformation of sulfur forms in high-sulfur coal and its utilization in coal-blending coking process: A review[J]. Chin J Chem Eng,2021,35(7):70−82.
    [2] 刘振宇. 重质有机资源热解过程中的自由基化学[J]. 北京化工大学学报(自然科学版),2018,45(5):8−24.

    LIU Zhen-yu. Radical chemistry in the pyrolysis of heavy organics[J]. J Beijing Univ Chem Technol (Natural Science Edition),2018,45(5):8−24.
    [3] 刘振宇. 煤化学的前沿与挑战: 结构与反应[J]. 中国科学: 化学,2014,44(9):1431−1438.

    LIU Zhen-yu. Advancement in coal chemistry: structure and reactivity[J]. Sci China: Chem,2014,44(9):1431−1438.
    [4] ZHANG X R, LIU Z Y, CHEN Z Z, XU T, LIU Q Y. Bond cleavage and reactive radical intermediates in heavy tar thermal cracking[J]. Fuel,2018,233:420−426. doi: 10.1016/j.fuel.2018.06.036
    [5] 王美君. 典型高硫煤热解过程中硫、氮的变迁及其交互作用机制[D]. 太原: 太原理工大学, 2013.

    WANG Mei-jun. Transformation and interaction of sulfur and nitrogen during pyrolysis of typical high-sulfur coals[D]. Taiyuan: Taiyuan University of Technology, 2013.
    [6] 魏强, 唐跃刚, 李薇薇, 赵巧静, 贺鑫, 李龙, 赵正福. 煤中有机硫结构研究进展[J]. 煤炭学报,2015,40(8):1911−1923.

    WEI Qiang, TANG Yue-gang, LI Wei-wei, ZHAO Qiao-jing, HE Xin, LI Long, ZHAO Zheng-fu. Research advances on organic sulfur structures in coal[J]. J China Coal Soc,2015,40(8):1911−1923.
    [7] CALKINS W H. The chemical forms of sulfur in coal: A review[J]. Fuel,1994,73(4):475−484. doi: 10.1016/0016-2361(94)90028-0
    [8] HOU J L, MA Y, LI S Y, SHI J, HE L, LI J. Transformation of sulfur and nitrogen during Shenmu coal pyrolysis[J]. Fuel,2018,231:134−144. doi: 10.1016/j.fuel.2018.05.046
    [9] WANG M J, LIU L J, WANG J C, CHANG L P, WANG H, HU Y F. Sulfur K-edge XANES study of sulfur transformation during pyrolysis of four coals with different ranks[J]. Fuel Process Technol,2015,131:262−269. doi: 10.1016/j.fuproc.2014.10.038
    [10] 杨暖暖. 高硫煤热解过程中硫释放与迁移的研究[D]. 呼和浩特: 内蒙古大学, 2018.

    YANG Nuan-nuan. Sulfur release and transformation during pyrolysis of high sulfur coals[D]. Huhehaote: Inner Mongolia University, 2018.
    [11] YAN J D, YANG J L, LIU Z Y. SH radical: the key intermediate in sulfur transformation during thermal processing of coal[J]. Environ Sci Technol,2005,39(13):5043−5051. doi: 10.1021/es048398c
    [12] 陈皓侃, 李保庆, 杨继礼, 尉迟唯, 李文, 孙成功. 兖州高硫煤的加氢热解脱硫及脱硫动力学[J]. 燃料化学学报.,1997,25(2):114−118.

    CHEN Hao-kan, LI Bao-qing, YANG Ji-li, YU Chi-wei, LI Wen, SUN Cheng-gong. Study of desulfurization and its kinetics in hydropyrolysis of Yanzhou bituminous coal[J]. J Fuel Chem Technol,1997,25(2):114−118.
    [13] ATTAR A, MESSENGER L. The desulfurization of organic sulfur and the transformations of organic sulfur functional groups in coal pyrolysis[J]. Energy Fuels,1983,20(1/2):53−62.
    [14] ZHANG D K, YANI S. Sulphur transformation during pyrolysis of an Australian lignite[J]. Proc Combust Inst,2011,33(2):1747−1753. doi: 10.1016/j.proci.2010.07.074
    [15] WANG H J, FENG Y H, ZHANG X X, LIN W, ZHAO Y L. Study of coal hydropyrolysis and desulfurization by ReaxFF molecular dynamics simulation[J]. Fuel,2015,145:241−248. doi: 10.1016/j.fuel.2014.12.074
    [16] LIANG Y H, WANG F, ZHANG H, WANG J P, LI Y Y, LI G Y. A ReaxFF molecular dynamics study on the mechanism of organic sulfur transformation in the hydropyrolysis process of lignite[J]. Fuel Process Technol,2016,147:32−40. doi: 10.1016/j.fuproc.2015.09.007
    [17] ZHANG Z J, GUO L T, ZHANG H Y, ZHAN J H. Comparing product distribution and desulfurization during direct pyrolysis and hydropyrolysis of Longkou oil shale kerogen using reactive MD simulations[J]. Int J Hydrogen Energy,2019,44(47):25335−25346. doi: 10.1016/j.ijhydene.2019.08.036
    [18] ZHONG Q F, ZHANG Y, SHABNAM S, XIAO J, VAN DUIN A C T, MATHEWS J P. Reductive gaseous (H2/NH3) desulfurization and gasification of high-sulfur petroleum coke via reactive force field molecular dynamics simulations[J]. Energy Fuels,2019,33(9):8065−8075. doi: 10.1021/acs.energyfuels.9b01425
    [19] ZHOU Q, HU H Q, LIU Q R, ZHU S W, ZHAO R. Effect of atmosphere on evolution of sulfur-containing gases during coal pyrolysis[J]. Energy Fuels,2005,19:892−897. doi: 10.1021/ef049773p
    [20] CHEN H K, LI B Q, YANG J I, ZHANG B J. Transformation of sulfur during pyrolysis and hydropyrolysis of coal[J]. Fuel,1998,77(6):487−493. doi: 10.1016/S0016-2361(97)00275-5
    [21] 陈皓侃, 李保庆, 张碧江. 高硫煤加氢热解脱硫的研究Ⅰ. 热解与加氢热解脱硫的对比[J]. 燃料化学学报.,1997,25(4):347−352.

    CHEN Hao-kan, LI Bao-qing, ZHANG Bi-jiang. Investigations on desulfurization of high sulfur coal during hydropyrolysis Ⅰ. Comparison of desulfurization between pyrolysis and hydropyrolysis[J]. J Fuel Chem Technol,1997,25(4):347−352.
    [22] 周强. 煤的热解行为及硫的脱除[D]. 大连: 大连理工大学, 2004.

    ZHOU Qiang. Behavior of coal and sulfur removal during pyrolysis[D]. Dalian: Dalian University of Technology, 2004.
    [23] 么秋香, 杜美利, 杨喜圆. 甲烷和氢气气氛下高有机硫煤的热解脱硫研究[J]. 煤炭工程,2013,45(5):105−108.

    YAO Qiu-xiang, DU Mei-li, YANG Xi-yuan. Study on pyrolysis desulphurization of high organic sulfur coal under methane and hydrogen atmospheres[J]. Coal Eng,2013,45(5):105−108.
    [24] 王光辉, 梁玉河, TRASS O. 高硫煤与焦炉净煤气共热解脱硫的研究[J]. 武汉科技大学学报(自然科学版),2001,24(1):31−33.

    WANG Guang-hui, LIANG Yu-he, OLEV Trass. Study on the mechanism of copyrolysis desulfurization of coal with coke-oven gas[J]. J of Wuhan Univ Sci Technol (Nat Sci Ed),2001,24(1):31−33.
    [25] WANG M, DU Q, LI Y P, XU J J, GAO J M, WANG H. Effect of steam on the transformation of sulfur during demineralized coal pyrolysis[J]. J Anal Appl Pyrolysis,2019,140:161−169. doi: 10.1016/j.jaap.2019.03.011
    [26] 高梅杉, 张建民, 罗鸣. 煤与天然气共热解过程中硫的析出规律研究[J]. 上海理工大学学报,2006,28(4):376−380. doi: 10.3969/j.issn.1007-6735.2006.04.018

    GAO Mei-shan, ZHANG Jian-min, LUO Ming. Research progress of coal pyrolysis desulfurization in reductive atmosphere[J]. J Univ Shanghai Sci Technol,2006,28(4):376−380. doi: 10.3969/j.issn.1007-6735.2006.04.018
    [27] WANG M, GAO J, XU J, DU Q, ZHANG Y. Effect of H2O on the transformation of sulfur during demineralized coal pyrolysis: molecular dynamics simulation using ReaxFF[J]. Energy Fuels,2021,35(3):2379−2390. doi: 10.1021/acs.energyfuels.0c02916
    [28] WEI R, REN L, ZHU T. The evolution characteristic of sulfur-containing gases during coal thermal conversion[J]. J Energy Inst,2020,93(4):1503−1510. doi: 10.1016/j.joei.2020.01.012
    [29] GUO H Q, WU H, YANG N N, FU Q, LIU F R, ZHANG H, HU R S, HU Y F. XAS combined with TG–DTG study on synergic effect on sulfur transformation during co-pyrolysis of sawdust and lignite[J]. J Therm Anal Calorim,2018,135(4):2475−2480.
    [30] GUO H Q, FU Q, ZHANG L, LIU F R, HU Y F, ZHANG H, HU R S. Sulfur K-edge XAS study of sulfur transformation behavior during pyrolysis and co-pyrolysis of biomass and coals under different atmospheres[J]. Fuel,2018,234:1322−1327. doi: 10.1016/j.fuel.2018.08.014
    [31] 李佳佳, 李梅, 程雪云, 孙功成, 金权, 徐荣声. 高硫煤与生物质共热解时有机硫的迁移规律[J]. 煤炭转化,2019,42(5):18−26.

    LI Jia-jia, LI Mei, CHENG Xue-yun, SUN Gong-cheng, JIN Quan, XU Rong-sheng. Characteristics of organic sulfur migration during co-pyrolysis of coal / biomass blends[J]. Coal Convers,2019,42(5):18−26.
    [32] VUTHALURU H B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis[J]. Bioresour Technol,2003,92(2):187−195.
    [33] HE W J, YIN G J, ZHAO Y B, ZHANG L J, XU S Y, HUANG T T, CHANG L, LU H X. Interactions between free radicals during co-pyrolysis of lignite and biomass[J]. Fuel,2021,302:121098. doi: 10.1016/j.fuel.2021.121098
    [34] WANG M J, TIAN J L, G R D, CHANG L I, XIE K C. Interactions between corncob and lignite during temperature-programmed co-pyrolysis[J]. Fuel,2015,142:102−108. doi: 10.1016/j.fuel.2014.11.003
    [35] 武宏香, 李海滨, 赵增立. 煤与生物质热重分析及动力学研究[J]. 燃料化学学报,2009,37(5):538−545. doi: 10.3969/j.issn.0253-2409.2009.05.005

    WU Hong-xiang, LI Hai-bin, ZHAO Zeng-li. Thermo gravimetric analysis and pyrolytic kinetic study on coal / biomass blends[J]. J Fuel Chem Technol,2009,37(5):538−545. doi: 10.3969/j.issn.0253-2409.2009.05.005
    [36] 何玉远. 煤与生物质共热解共气化过程中硫、氮的迁移规律研究[D]. 郑州: 郑州大学, 2018.

    HE Yu-yuan. Research on the transformation of sulfur and nitrogen during co-pyrolysis and co-gasification between coal and biomass[D]. Zhengzhou: Zhengzhou University, 2018.
    [37] 周仕学, 郭俊利, 刘夕华, 姜海涛. 高硫强粘结性煤与生物质共热解脱硫脱氮的研究[J]. 山东科技大学学报,2000,19(2):33−37.

    ZHOU Shi-xue, GUO Jun-li, LIU Xi-hua, JIANG Hai-tao. Research on the remove of sulfur and nitrogen during co-pyrolysis of high sulfur and strong caking coal with biomass[J]. J Shandong Univ Sci Technol,2000,19(2):33−37.
    [38] 么秋香, 杜美利, 张锦仁. 高硫煤与生物质共热解脱有机硫研究[J]. 煤炭转化,2014,37(3):15−19. doi: 10.3969/j.issn.1004-4248.2014.03.004

    YAO Qiu-xiang, DU Mei-li, ZHANG Jin-ren. Organic sulfur removel from high sulfur coal during co-pyrolysis with biomass[J]. Coal Convers,2014,37(3):15−19. doi: 10.3969/j.issn.1004-4248.2014.03.004
    [39] BLESA M J, MIRANDA J L, MOLINER R, IZQUIERDO M T, PALACIOS J M. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes[J]. J Anal Appl Pyrolysis,2003,70(2):665−677. doi: 10.1016/S0165-2370(03)00047-0
    [40] LIU F R, XIE L L, GUO H Q, XUE M, HU R S, HU H Q. Sulfur release and transformation behaviors of sulfur-containing model compounds during pyrolysis under oxidative atmosphere[J]. Fuel,2014,115:596−599. doi: 10.1016/j.fuel.2013.07.038
    [41] ZHANG F L, GUO H Q, LIU Y, LIU F R, HU R S. Theoretical study on desulfurization mechanisms of a coal-based model compound 2-methylthiophene during pyrolysis under inert and oxidative atmospheres[J]. Fuel,2019,257:116028. doi: 10.1016/j.fuel.2019.116028
    [42] YANG N N, GUO H Q, LIU F R, ZHANG H, HU Y F, HU R S. Effects of atmospheres on sulfur release and its transformation behavior during coal thermolysis[J]. Fuel,2018,215:446−453. doi: 10.1016/j.fuel.2017.11.099
    [43] LI G Y, WANG F, WANG J P, LI Y Y, LI A Q, LIANG Y H. ReaxFF and DFT study on the sulfur transformation mechanism during the oxidation process of lignite[J]. Fuel,2016,181:238−247. doi: 10.1016/j.fuel.2016.04.068
    [44] CHEN S Y, DING J X, LI G Y, WANG J P, TIAN Y, LIANG Y H. Theoretical study of the formation mechanism of sulfur-containing gases in the CO2 gasification of lignite[J]. Fuel,2019,242:398−407. doi: 10.1016/j.fuel.2019.01.010
    [45] 王之正, 王利斌, 裴贤丰, 王岩, 白效言. 高硫煤热解脱硫技术研究现状[J]. 洁净煤技术,2014,20(2):76−79.

    WANG Zhi-zhen, WANG Li-bin, PEI Xian-fen, WANG Yan, BAI Xiao-yan. Desulfurization of high-sulfur coal through pyrolysis[J]. Clean Coal Technol,2014,20(2):76−79.
    [46] 郭慧卿. 霍州煤热解预脱硫及其热解气体分析[D]. 太原: 太原理工大学, 2007.

    GUO Hui-qing. Pre-desulfurization of Huozhou coal by pyrolysis and the analysis of pyrolysis gases[D]. Taiyuan: Taiyuan University of Technology, 2007.
    [47] QI Y Q, LI W, CHEN H K, LI B Q. Sulfur release from coal in fluidized-bed reactor through pyrolysis and partial oxidation with low concentration of oxygen[J]. Fuel,2004,83(16):2189−2194. doi: 10.1016/j.fuel.2004.06.009
    [48] QI Y Q, LI W, CHEN H K, LI B Q. Desulfurization of coal through pyrolysis in a fluidized-bed reactor under nitrogen and 0.6% O2-N2 atmosphere[J]. Fuel,2004,83(6):705−712. doi: 10.1016/j.fuel.2003.09.021
    [49] WANG X L, GUO H Q, LIU F R, HU R S, WANG M J. Effects of CO2 on sulfur removal and its release behavior during coal pyrolysis[J]. Fuel,2016,165:484−489. doi: 10.1016/j.fuel.2015.10.047
    [50] DUAN L B, ZHAO C S, ZHOU W, QU C R, CHEN X P. Investigation on coal pyrolysis in CO2 atmosphere[J]. Energy Fuels,2009,23(4):3592−3599.
    [51] 郭慧卿, 付琦, 王鑫龙, 刘粉荣, 胡瑞生, 张浩. CO2气氛对煤热解过程中硫逸出的影响[J]. 燃料化学学报.,2017,45(5):523−528.

    GUO Hui-qing, FU Qi, WANG Xin-long, LIU Fen-rong, HU Rui-sheng, ZHANG Hao. Effect of CO2 atmosphere on sulfur release during coal pyrolysis[J]. J Fuel Chem Technol,2017,45(5):523−528.
    [52] LIU F R, LI B Q, LI W, BAI Z Q, YPERMAN J. Py-MS study of sulfur behavior during pyrolysis of high-sulfur coals under different atmospheres[J]. Fuel Process Technol,2010,91(11):1486−1490. doi: 10.1016/j.fuproc.2010.05.025
    [53] 刘粉荣, 李文, 李保庆, 白宗庆. 常压程序升温还原—质谱法研究遵义煤在热解过程中硫的变迁行为[J]. 燃料化学学报,2008,36(1):6−9. doi: 10.3969/j.issn.0253-2409.2008.01.002

    LIU Fen-rong, LI Wen, LI Bao-qing, BAI Zong-qing. Sulfur transformation during pyrolysis of Zunyi coal by atmosphere pressure-temperature programmed reduction-mass spectrum[J]. J Fuel Chem Technol,2008,36(1):6−9. doi: 10.3969/j.issn.0253-2409.2008.01.002
    [54] 刘粉荣, 李文, 李保庆, 白宗庆, YPERMAN J. AP-TPR-MS法考察六枝煤固定床热解过程中的硫变迁行为[J]. 燃料化学学报,2009,37(2):150−155. doi: 10.3969/j.issn.0253-2409.2009.02.005

    LIU Fen-rong, LI Wen, LI Bao-qing, BAI Zong-qing, YPERMAN J. Sulfur transformation during pyrolysis of Liuzhi coal in fixed bed reactor by AP-TPR-MS[J]. J Fuel Chem Technol,2009,37(2):150−155. doi: 10.3969/j.issn.0253-2409.2009.02.005
    [55] FRIGGE L, ELSERAFI G, STRÖHLE J, EPPLE B. Sulfur and chlorine gas species formation during coal pyrolysis in nitrogen and carbon dioxide atmosphere[J]. Energy Fuels,2016,30(9):7713−7720. doi: 10.1021/acs.energyfuels.6b01080
    [56] YANG N N, GUO H Q, LEI Y Q, ZHANG Y B, WANG M J, LIU F R, HU R S, HU Y F. XAS combined with Py-GC study on the effects of temperatures and atmospheres on sulfur release and its transformation behavior during coal pyrolysis[J]. Fuel,2019,250:373−380. doi: 10.1016/j.fuel.2019.04.010
    [57] XU L, YANG J L, LI Y M, YU L Z. Effects of organic gaseous additives on desulfurization of coal during pyrolysis[J]. Energy Sources,2003,25(10):1033−1042. doi: 10.1080/00908310390232488
    [58] 徐龙, 杨建丽, 李允梅, 刘振宇. 气相添加物对兖州煤燃前预脱硫的影响研究[J]. 燃料化学学报,2002,30(2):175−177. doi: 10.3969/j.issn.0253-2409.2002.02.016

    XU Long, YANG Jian-li, LI Yun-mei, LIU Zhen-yu. Influence of gaseous additives on desulfurization of yanzhou coal through pyrolysis[J]. J Fuel Chem Technol,2002,30(2):175−177. doi: 10.3969/j.issn.0253-2409.2002.02.016
    [59] 么秋香. 渭北高硫煤中有机硫赋存状态及热解迁移规律研究[D]. 西安: 西安科技大学, 2015.

    YAO Qiu-xiang. Occurrence and pyrolysis transformation of organic sulfur during pyrolysis of high sulfur coal from Weibei coalfield[D]. Xi’an: Xi'an University of Science and Technology, 2015.
    [60] 刘宝昌. 杂醇气氛下神木烟煤热解研究[D]. 大连: 大连理工大学, 2013.

    LIU Bao-chang. Research on the pyrolysis of Shenmu bituminous coal under fusel atmosphere[D]. Dalian: Dalian University of Technology, 2013.
    [61] ZHANG Y L, WANG M J, QIN Z, YANG Y L, FU C H, FENG L, CHANG L P. Effect of the interactions between volatiles and char on sulfur transformation during brown coal upgrade by pyrolysis[J]. Fuel,2013,103:915−922. doi: 10.1016/j.fuel.2012.09.061
    [62] 王鹏, 齐洪涛, 申岩峰, 王美君, 常丽萍. 次烟煤与高硫焦煤共热解相互影响及动力学研究[J]. 洁净煤技术,2016,22(6):28−33.

    WANG Peng, QI Hong-tao, SHEN Yan-feng, WANG Mei-jun, CHANG Li-ping. Research on interactions and kinetic during co-pyrolysis of subbituminous coal and high sulfur coking coal[J]. Clean Coal Technol,2016,22(6):28−33.
    [63] SHEN Y F, WANG M J, HU Y F, KONG J, WANG J C, CHANG L P, BAO W R. Transformation and regulation of sulfur during pyrolysis of coal blend with high organic-sulfur fat coal[J]. Fuel,2019,249:427−433. doi: 10.1016/j.fuel.2019.03.066
    [64] SHEN Y F, WANG M J, WU Y C, HU Y F, KONG J, DUAN X B, WANG J C, CHANG L P, BAO W R. Role of gas coal in directional regulation of sulfur during coal-blending coking of high organic-sulfur coking coal[J]. Energy Fuels,2020,34(3):2757−2764. doi: 10.1021/acs.energyfuels.9b03737
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  1835
  • HTML全文浏览量:  135
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-16
  • 录用日期:  2022-01-29
  • 网络出版日期:  2022-02-16
  • 刊出日期:  2022-06-25

目录

    /

    返回文章
    返回