留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

痕量K元素对煤基碳材料NOx低温吸附功能的影响机理

王梦容 王鲁元 张兴宇 程星星 王志强

王梦容, 王鲁元, 张兴宇, 程星星, 王志强. 痕量K元素对煤基碳材料NOx低温吸附功能的影响机理[J]. 燃料化学学报(中英文), 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8
引用本文: 王梦容, 王鲁元, 张兴宇, 程星星, 王志强. 痕量K元素对煤基碳材料NOx低温吸附功能的影响机理[J]. 燃料化学学报(中英文), 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8
WANG Meng-rong, WANG Lu-yuan, ZHANG Xing-yu, CHENG Xing-xing, WANG Zhi-qiang. Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8
Citation: WANG Meng-rong, WANG Lu-yuan, ZHANG Xing-yu, CHENG Xing-xing, WANG Zhi-qiang. Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature[J]. Journal of Fuel Chemistry and Technology, 2022, 50(7): 884-895. doi: 10.1016/S1872-5813(21)60199-8

痕量K元素对煤基碳材料NOx低温吸附功能的影响机理

doi: 10.1016/S1872-5813(21)60199-8
详细信息
    通讯作者:

    E-mail:wangly@sderi.cn

  • 中图分类号: TK-9

Influence mechanism of trace K element on NOx adsorption of coal-based carbon materials at low temperature

  • 摘要: 本研究选取准东煤为碳材料前驱体,以水热耦合痕量K元素的方法对其进行活化。通过实验探究K质量浓度对碳吸附性能的影响,同时系统研究了材料的NOx低温吸附性能。实验结果表明,活化液中K2CO3质量浓度为0.0067 g/mL时,所制得的样品对NOx的吸附性能较好,其饱和NOx吸附时间为3200 s。通过低温N2物理吸附研究发现,该质量浓度下样品的孔结构发展较好,比表面积达到708.6 m2/g。此外,本研究通过XPS、SEM等手段对不同质量浓度K2CO3活化的碳基材料进行了物化表征,并对不同质量浓度K2CO3活化制备的样品进行了表面性质分析,通过FT-IR对样品表面的吸附过程进行研究,发现准东煤基碳材料优良的吸附性能与表面结构相关,研究中采用DFT手段对反应机理进行验证,结果表明,K可促进C−O键的形成,而活性C−O结构是促进NOx吸附的关键因素。通过该系列实验,本工作获得采用水热耦合痕量K元素制备准东煤基碳材料的最佳方法和最优工艺参数。
  • FIG. 1687.  FIG. 1687.

    FIG. 1687.  FIG. 1687.

    图  1  准东煤碳材料的SEM照片

    Figure  1  SEM images of the activated carbons derived from Zhundong coal

    图  2  该组碳材料的N2吸附-脱附曲线和孔径分布

    Figure  2  N2 adsorption-desorption curve and pore size distribution of the carbon materials

    图  3  碳材料吸附前后的XPS谱图

    Figure  3  XPS spectra of activated carbon before and after adsorption

    (a): O ls spectra of fresh AC-0.2; (b): C ls spectra of fresh AC-0.2; (c): O ls spectra of fresh AC-0.3; (d): C ls spectra of fresh AC-0.3; (e): O ls spectra of AC-0.2 after adsorption; (f): C ls spectra of AC-0.2 after adsorption; (g): O ls spectra of AC-0.3 after adsorption; (h): C ls spectra of AC-0.3 after adsorption

    图  4  该组碳材料表面官能团含量

    Figure  4  Surface functional group content of the activated carbons

    (a): relative content of oxygen-containing functional groups on the surface of the carbon materials before adsorption; (b): relative content of oxygen functional groups on the surface of the carbon materials after adsorption; (c): relative content of carbon functional groups of the carbon materials before adsorption; (d): relative content of carbon functional groups of the carbon materials after adsorption

    图  5  碳材料吸附前后的FT-IR谱图

    Figure  5  FT-IR spectra of carbon materials before (a) and after (b) adsorption

    图  6  碳材料的TG、DTG和DSC谱图

    Figure  6  TG, DTG and DSC spectra of carbon materials

    图  7  NOx吸附穿透曲线

    Figure  7  NOx adsorption penetration curves

    图  8  NOx吸附穿透试验台示意图

    Figure  8  Schematic diagram of NO x adsorption test

    图  9  C34H10-Armchair构型

    Figure  9  Configuration of C34H10-Armchair

    图  10  K修饰C34H10-Armchair三种构型

    Figure  10  Configurations of K modifies C34H10-Armchair

    图  11  三种构型吸附能

    Figure  11  Adsorption energy of the three configurations

    图  12  两个NO分子吸附

    Figure  12  Configurations of two NO molecules adsorption

    图  13  构型吸附能

    Figure  13  The adsorption energy of different configurations

    图  14  两个O2分子吸附路径示意图

    Figure  14  Two adsorption paths for O2 molecules

    表  1  准东煤的工业分析

    Table  1  Proximate analysis of Zhundong coal

    Industrial analysis wad/%
    MAVFC
    11.2325.7316.2851.83
    下载: 导出CSV

    表  2  准东煤的元素分析

    Table  2  Ultimate analysis of Zhundong coal

    Elemental analysis wad/%
    CHONS
    66.364.5715.910.550.86
    下载: 导出CSV

    表  3  碳酸钾质量浓度和配置

    Table  3  Potassium carbonate concentration for preparation of the samples

    Sample name${ {\rm{K} }_2}{\rm{C} }{ {\rm{O} }_3}/({\rm{g} } \cdot {\rm{m} }{ {\rm{L} }^{ - 1} })$Support
    0.05K2CO3-AC0.00175gASC
    0.1 K2CO3-AC0.00335gASC
    0.2 K2CO3-AC0.00675gASC
    0.3 K2CO3-AC0.015gASC
    0.4 K2CO3-AC0.0135gASC
    下载: 导出CSV

    表  4  K2CO3系列碳材料的比表面积和孔径分布

    Table  4  Specific surface area and pore size distribution of the as-prepared carbon materials

    SampleA/(m2·g−1)v/(cm3·g−1vmicro / vtotalvmeso / vtotalSize /nm
    totalmicromeso
    Raw coal 6.4 0.483
    AC-0.05 492 0.2919 0.2314 0.1009 79.27% 34.57% 2.373
    AC-0.1 632.5 0.3599 0.298 0.1291 82.80% 35.87% 2.276
    AC-0.2 708.6 0.4208 0.3128 0.2139 74.33% 50.83% 2.375
    AC-0.3 652.5 0.3776 0.1934 0.2848 51.22% 75.42% 2.315
    AC-0.4 510.3 0.2917 0.2026 0.2026 69.45% 69.45% 2.286
    下载: 导出CSV

    表  5  K2CO3系列碳材料的NOx吸附量

    Table  5  NOx adsorption capacity of K2CO3 series carbon materials

    SampleTime/swNOx /(mg·g−1)
    AC-0.05 2000 16.32
    AC-0.1 2200 20.14
    AC-0.2 3200 28.73
    AC-0.3 3400 30.46
    AC-0.4 2100 20.68
    下载: 导出CSV
  • [1] 方叠, 钱跃东, 王勤耕, 段宁. 区域复合型大气污染调控模型研究[J]. 中国环境科学,2013,3(7):1215−1222.

    FANG Die, QIAN Yue-dong, WANG Qin-geng, DUAN Ning. An optimization model for regional complex air pollution control[J]. Chin Environ Sci,2013,3(7):1215−1222.
    [2] 薛文博, 王金南, 杨金田, 雷宇, 燕丽, 贺晋瑜, 韩宝平. 淄博市大气污染特征模型模拟及环境容量估算[J]. 环境科学,2013,34(4):1264−1269.

    XUE Wen-bo, WANG Jin-nan, YANG Jin-tian, LIN Yu, YAN Li, HE Jin-yu, HAN Bao-ping. Simulation of air pollution characteristics and estimates of environal capacity in Zibo city[J]. Environ Sci,2013,34(4):1264−1269.
    [3] 张稼轩, 李博, 王颖, 李雪超, 张晗. 河谷城市大气环境容量的研究[J]. 环境科学研究,2020,33(4):801−808.

    ZHANG Jia-xuan, LI Bo, WANG Ying, LI Xue-chao, ZHANG Han. Atmospheric environal capacity in river valley terrain[J]. Res Environ Sci,2020,33(4):801−808.
    [4] 张世秋. 通过制度变革推进区域复合型大气污染的防控与管理[J]. 环境保护,2012,(6):73−76. doi: 10.3969/j.issn.0253-9705.2012.06.019

    ZHANG Shi-qiu. Promote the prevention and control and management of regional compound air pollution through institutional reform[J]. Environ Pot,2012,(6):73−76. doi: 10.3969/j.issn.0253-9705.2012.06.019
    [5] 代生福, 李永峰. 我国经济新常态背景下的煤炭企业发展战略[J]. 能源技术与管理,2015,40(6):190−193. doi: 10.3969/j.issn.1672-9943.2015.06.071

    DAI Sheng-fu, LI Yong-feng. Development strategy of coal enterprises under the background of China's new normal economy[J]. Energy Technol Manage,2015,40(6):190−193. doi: 10.3969/j.issn.1672-9943.2015.06.071
    [6] JABLONSKA M, PALKOVITS R. Nitrogen oxide removal over hydrotalcite–derived mixed metal oxides[J]. Catal Sci Technol,2016,6(1):49−72.
    [7] TSUJI K, SHIRAISHI I. Combined desulfurization, denitrification and reduction of air toxics using activated coke. 2. Process applications and performance of activated coke[J]. Fuel,1997,76(6):555−560. doi: 10.1016/S0016-2361(97)00022-7
    [8] TSUCHIYA Y, YAMAYA Y, AMANO Y, MACHIDA M. Effect of two types of adsorption sites of activated carbon fibers on nitrate ion adsorption[J]. J Environ Manag,2021,289:112484.
    [9] WANG S Q, XU S S, GAO S W, XIAO P, JIANG M H, ZHAO H, HUANG B, LIU L B, NIU H W, WANG J Y, GUO D F. Simultaneous removal of SO2 and NOx from flue gas by low-temperature adsorption over activated carbon[J]. Sci Reports, 2021, 11(1).
    [10] GRANGER P, WU J X, BA H, BAAZIZ W, ERSEN O, ZAFEIRATOS S, NHUT JM, GIAMBASTIANI G, PHAM HUU C. Cooperative effect of Pt single-atoms and nanoparticles supported on carbonaceous materials: Catalytic NO decomposition as a probe reaction[J]. Appl Catal A: Gen,2021,617:118103.
    [11] 贺新福, 张小琴, 安得宁, 吴红菊, 周安宁. 低阶型煤热解半焦制备活性炭的试验研究[J]. 煤炭技术,2017,36(4):290−293.

    HE Xin-fu, ZHANG Xiao-qin, AN De-ning, WU Hong-ju, ZHOU An-ning. Experimental study on preparation of activated carbon from pyrolysis of semi-coke of low-rank briquette[J]. Coal Technol,2017,36(4):290−293.
    [12] AN D H, XIANG W, CHENG X X, CUI L, ZHANG X Y, ZHOU P, DONG Y. Regeneration performance of activated coke for elemental mercury removal by microwave and thermal methods[J]. Fuel Proc Technol,2020,199:106303.
    [13] WANG L Y, CHENG X X, WANG Z Q, MA C Y, QIN Y K. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO[J]. Appl Catal B: Environ,2017,201:636−651. doi: 10.1016/j.apcatb.2016.08.021
    [14] 王鲁元, 程星星, 张兴宇, 马春元. CeO2纳米棒负载Co催化CO脱除NOx的机理[J]. 化工学报,2016,67(z1):260−269.

    WANG Lu-yuan, CHENG Xing-xing, ZHANG Xing-yu, MA Chun-yuan. Mechanism of NOx removal by Co catalyzed by CeO2 nanorods[J]. J Chem Ind,2016,67(z1):260−269.
    [15] YANG J, REN S, ZHANG T S, SU Z H, LONG H M, KONG M, YAO L. Iron doped effects on active sites formation over activated carbon supported Mn-Ce oxide catalysts for low-temperature SCR of NO[J]. Chem Eng J,2020,379:122398.
    [16] YAN W X, LI S G, FAN C G, DENG S. Effect of surface carbon-oxygen complexes during NO reduction by coal char[J]. Fuel,2017,204:40−46. doi: 10.1016/j.fuel.2017.05.045
    [17] FU Y L, ZHANG Y F, LI G Q, ZHANG J, GUO Y J. NO removal activity and surface characterization of activated carbon with oxidation modification[J]. J Energy Inst,2017,90(5):813−823. doi: 10.1016/j.joei.2016.06.002
    [18] LIU H, LI J Y, XIANG K S, HE S D, SHEN F H. DFT and experimental studies on the mechanism of mercury adsorption on O2-/NO-codoped porous carbon[J]. ACS Omega,2021,6(18):12343−12350. doi: 10.1021/acsomega.1c01391
    [19] 赵彤. C–O单键官能团在半焦–NO反应中的作用[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2018.

    ZHAO Tong. Role of C–O single bond Functional groups in char-NO reaction[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering, Chinese Academy of Sciences), 2018.
    [20] DING S, LI Y R, ZHU T Y, GUO Y Y. Regeneration performance and carbon consumption of semi-coke and activated coke for SO2 and NO removal[J]. J Environ Sci,2015,34:37−43. doi: 10.1016/j.jes.2015.02.004
    [21] 王鲁元. 基于半焦载体催化剂的一氧化碳催化脱硝性能研究[D]. 济南: 山东大学, 2018.

    WANG Lu-yuan. Study on catalytic denitrification performance of carbon monoxide based on semi-coke carrier catalyst[D]. Jinan: Shandong University, 2018.
    [22] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. J Materials Chem,2012,22(45):23710−23725. doi: 10.1039/c2jm34066f
    [23] SCHRODER H, CREON A, SCHWABE T. Reformulation of the D-3(Becke-Johnson) dispersion correction without resorting to higher than C–6 dispersion coefficients[J]. J Chem Theory Comput,2015,11(7):3163−3170. doi: 10.1021/acs.jctc.5b00400
    [24] HE K, ROBERTSON A W, FAN Y, CHRISTOPHER S A, LIN Y C, KAZU S, ANGUS I K, JAMIE H W. Temperature dependence of the reconstruction of zigzag edges in graphene[J]. Acs Nano,2015,9(5):4786−4795. doi: 10.1021/acsnano.5b01130
    [25] 张秀霞, 伍慧喜, 谢苗, 林日亿, 周志军, 吕晓雪. 钠对焦炭非均相还原NO的微观作用机理[J]. 燃料化学学报,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004

    ZHANG Xiu-xia, WU Hui-xi, XIE Miao, LIN Ri-yi, ZHOU Zhi-jun, LV Xiao-xue. Microscopic mechanism for effect of sodium on NO heterogeneous reduction by char[J]. J Fuel Chem Technol,2020,48(6):663−673. doi: 10.3969/j.issn.0253-2409.2020.06.004
    [26] 张秀霞, 周俊虎, 周志军, 刘建忠, 岑可法. 煤粉再燃中煤焦异相还原NO机理的量化研究[J]. 燃烧科学与技术,2011,17(2):155−159.

    ZHANG Xiu-xia, ZHOU Jun-hu, ZHOU Zhi-jun, LIU Jian-zhong, CEN Ke-fa. A quantum chemistry study of heterogeneous reduction mechanisms of NO on the surface of char during pulverized coal reburning[J]. J Combust Sci Technol,2011,17(2):155−159.
  • 加载中
图(15) / 表(5)
计量
  • 文章访问数:  384
  • HTML全文浏览量:  81
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-26
  • 修回日期:  2022-01-10
  • 录用日期:  2022-02-16
  • 网络出版日期:  2022-02-25
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回