留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

费托合成铁基催化剂中Fe3O4含量对CO2选择性的影响

韩笑 青明 王洪 于欣 索海云 沈先锋 杨勇 李永旺

韩笑, 青明, 王洪, 于欣, 索海云, 沈先锋, 杨勇, 李永旺. 费托合成铁基催化剂中Fe3O4含量对CO2选择性的影响[J]. 燃料化学学报, 2023, 51(2): 155-164. doi: 10.1016/S1872-5813(22)60018-5
引用本文: 韩笑, 青明, 王洪, 于欣, 索海云, 沈先锋, 杨勇, 李永旺. 费托合成铁基催化剂中Fe3O4含量对CO2选择性的影响[J]. 燃料化学学报, 2023, 51(2): 155-164. doi: 10.1016/S1872-5813(22)60018-5
HAN Xiao, QING Ming, WANG Hong, YU Xin, SUO Hai-yun, SHEN Xian-feng, YANG Yong, LI Yong-wang. Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 155-164. doi: 10.1016/S1872-5813(22)60018-5
Citation: HAN Xiao, QING Ming, WANG Hong, YU Xin, SUO Hai-yun, SHEN Xian-feng, YANG Yong, LI Yong-wang. Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(2): 155-164. doi: 10.1016/S1872-5813(22)60018-5

费托合成铁基催化剂中Fe3O4含量对CO2选择性的影响

doi: 10.1016/S1872-5813(22)60018-5
详细信息
    通讯作者:

    Tel: 18611906663,E-mail:yyong@sxicc.ac.cn

  • 中图分类号: O643.36

Effect of Fe3O4 content on the CO2 selectivity of iron-based catalyst for Fischer-Tropsch synthesis

  • 摘要: 本研究以共沉淀法制备的α-Fe2O3催化剂为前驱体,通过调变碳化温度和碳化时间制备了不同物相组成的系列催化剂,采用XRD、Mössbauer谱、XPS和Raman光谱等技术考察了催化剂体相和表面物相组成,在此基础上研究了不同条件下(不同CO转化率和H2O分压)催化剂的物相组成与催化剂性能之间的关系,重点探究了费托合成条件下CO2生成的活性相。结果表明,升高碳化温度和延长碳化时间有利于Fe3O4向碳化铁转变。在典型的费托合成条件下,催化剂的活性受到碳化铁含量和积炭程度的共同影响。当H2O分压较低时,动力学因素限制了水煤气变换(WGS)反应的进行,CO2选择性仅受CO转化率的影响,Fe3O4含量变化对CO2选择性无明显影响;而在较高的H2O分压下,随着催化剂中Fe3O4含量增加, CO2选择性也随之增加。本文初步阐明了Fe3O4是铁基费托合成催化剂中WGS反应的主要活性相,为认识Fe基费托合成催化剂CO2生成的活性相提供了新的信息,为新型低CO2选择性费托合成工业催化剂的设计奠定了基础。
  • FIG. 2091.  FIG. 2091.

    FIG. 2091.  FIG. 2091.

    图  1  不同条件碳化后Fe催化剂的XRD谱图

    Figure  1  XRD pattern of the Fe-based catalysts pretreated under different carburization conditions

    图  2  不同条件碳化后Fe催化剂的Mössbauer谱图

    Figure  2  Mössbauer spectra of the Fe-based catalysts pretreated under different carburization conditions

    图  3  不同条件碳化后催化剂的Fe 2p XPS谱图

    Figure  3  Fe 2p XPS spectra of Fe-based catalysts pretreated under different carburization conditions

    图  4  不同条件碳化后Fe催化剂Raman谱图

    Figure  4  Raman spectra of various carburized Fe-based catalysts

    图  5  Fe催化剂在费托合成评价中的CO转化率(a)与CO2选择性(b)

    Figure  5  CO conversion (a) and CO2 selectivity (b) of FTS over various Fe-based catalysts

    图  6  反应后催化剂的XRD谱图

    Figure  6  XRD patterns of various spent catalysts after the FTS reaction test

    图  7  反应后催化剂的Mössbauer谱图

    Figure  7  Mössbauer spectra of various spent catalysts after the FTS reaction test

    图  8  反应后催化剂的Fe 2p XPS谱图

    Figure  8  Fe 2p XPS spectra of various spent catalysts after the FTS reaction test

    图  9  不同Fe3O4含量催化剂的CO2选择性-CO转化率坐标分布位置(TOS = 800 min)

    Figure  9  Relationship between the CO2 selectivity and CO conversion for FTS over various Fe-based catalysts with different Fe3O4 contents (TOS = 800 min)

    图  10  CO转化率水平下的CO2选择性

    Figure  10  CO2 selectivity at same CO conversion for FTS over various Fe-based catalysts

    图  11  添加3%H2O条件下Fe催化剂在费托合成评价中的CO转化率(a)与CO2选择性(b)

    Figure  11  CO conversion (a) and CO2 selectivity (b) of various Fe-based catalysts during the FTS reaction with the addition of 3% H2O in the feed

    图  12  添加3%H2O条件下(调整空速后)Fe催化剂在费托合成评价中的CO转化率(a)与CO2选择性(b)

    Figure  12  CO conversion (a) and CO2 selectivity (b) of various Fe-based catalysts during the FTS reaction with the addition of 3% H2O in the feed; the CO conversion over different catalysts was controlled at a similar level (15%–20%) by adjusting the space velocity

    图  13  不同Fe3O4含量Fe催化剂的H2O-TPD谱图

    Figure  13  H2O-TPD profiles of Fe-based catalysts with different Fe3O4 content

    表  1  Fe催化剂的碳化条件

    Table  1  Conditions for the carburization of the Fe-based catalysts

    CatalystCarburization temp. t/℃Time t/h
    Fe-270a-1b2701
    Fe-270-42704
    Fe-290-42904
    Fe-310-43104
    a: carburization temperature (℃); b: carburization time (h)
    下载: 导出CSV

    表  2  不同条件碳化后Fe催化剂的物相组成及其含量

    Table  2  Iron phase composition and content of Fe-based catalysts pretreated under different carburization conditions

    CatalystPhase composition /%
    Fe3O4FexC
    χ-Fe5C2ε-Fe2C
    Fe-270-187.799.552.66
    Fe-270-468.516.7524.73
    Fe-290-439.7625.2734.97
    Fe-310-46.2837.0356.69
    下载: 导出CSV

    表  3  反应后催化剂的物相组成及其含量

    Table  3  Iron phase composition of various spent catalysts after the FTS reaction test

    CatalystPhase composition /%
    Fe3O4FexC
    χ-Fe5C2ε-Fe2C
    Fe-270-175.849.5014.67
    Fe-270-465.1025.809.08
    Fe-290-428.1932.0339.78
    Fe-310-411.9543.6744.38
    下载: 导出CSV

    表  4  添加3%H2O反应后催化剂的物相组成及其含量

    Table  4  Iron phase composition of various spent catalysts after FTS upon adding 3% H2O in the feed

    CatalystPhase composition /%
    Fe3O4FexC
    χ-Fe5C2ε-Fe2C
    Fe-270-190.611.008.40
    Fe-270-488.626.325.06
    Fe-290-452.9035.6711.43
    Fe-310-47.5570.3022.14
    下载: 导出CSV
  • [1] 相宏伟, 杨勇, 李永旺. 煤炭间接液化: 从基础到工业化[J]. 中国科学: 化学,2014,44(12):1876−1892.

    XIANG Hong-wei, YANG Yong, LI Yong-wang. Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Sci China Chem,2014,44(12):1876−1892.
    [2] WANG P, CHEN W, CHIANG F K, DUGULAN A, SONG Y, PESTMAN R, ZHANG K, YAO J, FENG B, MIAO P, XU W, HENSEN E. Synthesis of stable and low-CO2 selective ε-iron carbide Fischer-Tropsch catalysts[J]. Sci Adv,2018,4(10):eaau2947.
    [3] TOPSØE H, BOUDART M. Mössbauer spectroscopy of CO shift catalysts promoted with lead[J]. J Catal,1973,31(3):346−359. doi: 10.1016/0021-9517(73)90304-7
    [4] RETHWISCH D G, PHILLIPS J, CHEN Y, HAYDEN T F, DUMESIC J A. Water-gas shift over magnetite particles supported on graphite: Effects of treatments in CO/CO2 and H2/H2O gas mixtures[J]. J Catal,1985,91(1):167−180. doi: 10.1016/0021-9517(85)90298-2
    [5] KETURAKIS C J, ZHU M, GIBSON E K, DATURI M, TAO F, FRENKEL A I, WACHS I E. Dynamics of CrO3-Fe2O3 catalysts during the high-temperature water-gas shift reaction: Molecular structures and reactivity[J]. ACS Catal,2016,6(7):4786−4798. doi: 10.1021/acscatal.6b01281
    [6] OKI S, MEZAKI R. Identification of rate-controlling steps for the water-gas shift reaction over an iron oxide catalyst[J]. J Phys Chem,1973,77:447−452. doi: 10.1021/j100623a006
    [7] LOX E S, FROMENT G F. Kinetics of the Fischer-Tropsch reaction on a precipitated promoted iron catalyst. 2. Kinetic modeling[J]. Ind Eng Chem Res,1993,32(1):71−82. doi: 10.1021/ie00013a011
    [8] DING M, YANG Y, XU J, TAO Z, WANG H, XIANG H W, LI Y W. Effect of reduction pressure on precipitated potassium promoted iron-manganese catalyst for Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2008,345:176−184. doi: 10.1016/j.apcata.2008.04.036
    [9] WANG H, YANG Y, WU B S, XU J, DING M, WANG H L, FAN W H, XIANG H W, LI Y W. Hydrogen reduction kinetics modeling of a precipitated iron Fischer-Tropsch catalyst[J]. J Mol Catal A: Chem,2009,308:96−107. doi: 10.1016/j.molcata.2009.03.030
    [10] PAALANEN P P, VAN VREESWIJK S H, DUGULAN A I, WECKHUYSEN B M. Identification of Iron Carbides in Fe(-Na-S)/α-Al2O3 Fischer-Tropsch synthesis catalysts with X-ray powder diffractometry and Mössbauer absorption spectroscopy[J]. ChemCatChem,2020,12(20):5121−5139. doi: 10.1002/cctc.202000707
    [11] YUAN X, ZHOU Y W, HUO C F, GUO W, YANG Y, LI Y, WEN X D. Crystal structure prediction approach to explore the iron carbide phases: Novel crystal structures and unexpected magnetic properties[J]. J Phys Chem C, 2020, 124(31): 17244–17254.
    [12] LU F, CHEN X, LEI Z, WEN L, ZHANG Y. Revealing the activity of different iron carbides for Fischer-Tropsch synthesis[J]. Appl Catal B: Environ,2021,281:119521. doi: 10.1016/j.apcatb.2020.119521
    [13] 张昱. 铁基 FT 合成催化剂助剂效应(SiO2、Mn)研究[D]. 北京: 中国科学院大学, 2020.

    ZHANG Yu. Study on the promoter effect of Fe-based Fischer-Tropsch synthesis catalysts: the case of SiO2 and Mn[D]. Beijing: University of Chinese Academy of Sciences, 2020.
    [14] FU D, DAI W, XU X, MAO W, SU J, ZHANG Z, SHI B, SMITH J, LI P P, XU P J. Probing the structure evolution of iron-based Fischer-Tropsch to produce olefins by operando Raman spectroscopy[J]. ChemCatChem,2015,7(5):752−756.
    [15] TAN P, ZHANG S L, YUE K T, HUANG F, SHI Z, ZHOU X, GU Z. Comparative Raman study of carbon nanotubes prepared by D. C. Arc discharge and catalytic methods[J]. J Raman Spectr,1997,28(5):369−372. doi: 10.1002/(SICI)1097-4555(199705)28:5<369::AID-JRS107>3.0.CO;2-X
    [16] 定明月, 杨勇, 相宏伟, 李永旺. 费托合成Fe基催化剂中铁物相与活性的关系[J]. 催化学报,2010,31(9):1145−1150.

    DING Ming-yue, YANG Yong, XIANG Hong-wei, LI Yong-wang. Relationship between iron phase and activity of iron-based Fischer-Tropsch synthesis catalyst[J]. Chin J Catal,2010,31(9):1145−1150.
    [17] DING M, YANG Y, WU B, WANG T, MA L, XIANG H, LI Y. Transformation of carbonaceous species and its influence on catalytic performance for iron-based Fischer-Tropsch synthesis catalyst[J]. J Mol Catal A: Chem,2011,351:165−173. doi: 10.1016/j.molcata.2011.10.001
    [18] NING W, KOIZUMI N, CHANG H, MOCHIZUKI T, ITOH T, YAMADA M. Phase transformation of unpromoted and promoted Fe catalysts and the formation of carbonaceous compounds during Fischer-Tropsch synthesis reaction[J]. Appl Catal A: Gen,2006,312:35−44. doi: 10.1016/j.apcata.2006.06.025
    [19] BUTT J B. Carbide phases on iron-based Fischer-Tropsch synthesis catalysts part II: Some reaction studies[J]. Catal Lett,1990,7(1):83−105.
    [20] DING M, YANG Y, WU B, XU J, ZHANG C, XIANG H, LI Y. Study of phase transformation and catalytic performance on precipitated iron-based catalyst for Fischer-Tropsch synthesis[J]. J Mol Catal A: Chem,2009,303(1):65−71.
    [21] PÉREZ-ALONSO F J, HERRANZ T, ROJAS S, OJEDA M, GRANADOS M L, TERREROS P, FIERRO J L G, GRACIA M, GANCEDO J R. Evolution of the bulk structure and surface species on Fe-Ce catalysts during the Fischer-Tropsch synthesis[J]. Green Chem,2007,9(6):663−670.
    [22] SHROFF M D, KALAKKAD D S, COULTER K E, KOHLER S D, HARRINGTON M S, JACKSON N B, SAULT A G, DATYE A K. Activation of precipitated iron Fischer-Tropsch synthesis catalysts[J]. J Catal,1995,156(2):185−207. doi: 10.1006/jcat.1995.1247
    [23] THÜNE P, MOODLEY P, SCHEIJEN F, FREDRIKSSON H, LANCEE R, KROPF J, MILLER J, NIEMANTSVERDRIET J W. The effect of water on the stability of iron oxide and iron carbide nanoparticles in hydrogen and syngas followed by in Situ X-ray absorption spectroscopy[J]. J Phys Chem C,2012,116(13):7367−7373. doi: 10.1021/jp210754k
    [24] KRISHNAMOORTHY S, LI A, IGLESIA E. Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts[J]. Catal Lett,2002,80(1):77−86.
    [25] OJEDA M, NABAR R, NILEKAR A U, ISHIKAWA A, MAVRIKAKIS M, IGLESIA E. CO activation pathways and the mechanism of Fischer-Tropsch synthesis[J]. J Catal,2010,272(2):287−297. doi: 10.1016/j.jcat.2010.04.012
    [26] BUKUR D B, TODIC B, ELBASHIR N. Role of water-gas-shift reaction in Fischer-Tropsch synthesis on iron catalysts: A review[J]. Catal Today,2016,275:66−75. doi: 10.1016/j.cattod.2015.11.005
    [27] 王珏, 杨勇, 青明, 白云坡, 王洪, 胡彩霞, 相宏伟, 岳仁亮. 助剂对铁基费托合成催化剂氧化行为的影响: H2O作用的解读[J]. 燃料化学学报,2020,48(1):63−74. doi: 10.3969/j.issn.0253-2409.2020.01.008

    WANG Jue, YANG Yong, QING Ming, BAI Yun-po, WANG Hong, HU Cai-xia, XIANG Hong-wei, YUE Ren-liang. Effect of the promoters on oxidation behavior of Fe-based Fischer-Tropsch catalyst: Deciphering the role of H2O[J]. J Fuel Chem Technol,2020,48(1):63−74. doi: 10.3969/j.issn.0253-2409.2020.01.008
    [28] 郭天雨, 刘粟侥, 青明, 冯景丽, 吕振刚, 王洪, 杨勇. 原位XRD反应装置下H2O对Fe5C2的物相及F-T反应性能影响的研究[J]. 燃料化学学报,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009

    GUO Tian-yu, LIU Su-yao, QING Ming, FENG Jing-li, LV Zhen-gang, WANG Hong, YANG Yong. In situ XRD study of the effect of H2O on Fe5C2 phase and Fischer-Tropsch performance[J]. J Fuel Chem Technol,2020,48(1):75−82. doi: 10.3969/j.issn.0253-2409.2020.01.009
    [29] GALVIS H M T, BITTER J H, DAVIDIAN T, RUITENBEEK M, JONG K P D. Iron particle size effects for direct production of lower olefins from synthesis gas[J]. J Am Chem Soc,2012,134(39):16207−16215. doi: 10.1021/ja304958u
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  55
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 录用日期:  2022-04-16
  • 修回日期:  2022-03-25
  • 网络出版日期:  2022-05-12
  • 刊出日期:  2023-01-18

目录

    /

    返回文章
    返回