留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于炔丙基与丁二炔生成第一个碳环的反应机理研究

张韦 宁硕 毛仕迪 杨喜历 陈朝辉 孟丽苹

张韦, 宁硕, 毛仕迪, 杨喜历, 陈朝辉, 孟丽苹. 基于炔丙基与丁二炔生成第一个碳环的反应机理研究[J]. 燃料化学学报(中英文), 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9
引用本文: 张韦, 宁硕, 毛仕迪, 杨喜历, 陈朝辉, 孟丽苹. 基于炔丙基与丁二炔生成第一个碳环的反应机理研究[J]. 燃料化学学报(中英文), 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9
ZHANG Wei, NING Shuo, MAO Shi-di, YANG Xi-li, CHEN Zhao-hui, MENG Li-ping. Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9
Citation: ZHANG Wei, NING Shuo, MAO Shi-di, YANG Xi-li, CHEN Zhao-hui, MENG Li-ping. Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 492-501. doi: 10.1016/S1872-5813(22)60054-9

基于炔丙基与丁二炔生成第一个碳环的反应机理研究

doi: 10.1016/S1872-5813(22)60054-9
基金项目: 国家自然科学基金(52166007)资助
详细信息
    通讯作者:

    E-mail: chenzhaohuiok@sina.com

  • 中图分类号: TQ517.1

Study of the reaction mechanism based on the formation of the first carbocyclic ring from propargyl and diacetylene

Funds: The project was supported by the National Natural Science Foundation of China (52166007).
  • 摘要:

    第一碳环的形成是多环芳烃(PAHs)生成的关键速率控制步,探明第一碳环的生成机理对抑制PAHs生成至关重要。为探究第一碳环的生长过程,本研究利用平均局部离子化能(ALIE)和静电势(ESP)预测反应发生的位点,基于密度泛函(DFT)方法和过渡态理论(TST),计算炔丙基(C3H3) + 丁二炔(C4H2)生成第一碳环的反应路径与化学动力学参数。结果表明,C3H3与C4H2加成反应形成五、六和七元环分子,其中,五元环形成速率最快,六元环最慢。在第一碳环的生成过程中,H转移和闭环反应所需的活化能较大、反应速率缓慢,其决定了第一碳环的生长速率。各碳环上的H转移反应速率取决于碳环上的C原子数量,其中,五元环最快,六元环最慢。本研究完善了碳氢燃料燃烧过程中第一碳环生成的反应动力学和热力学数据,可为PAHs的生成及预测提供有力的理论依据。

  • FIG. 2208.  FIG. 2208.

    FIG. 2208.  FIG. 2208.

    图  1  C3H3与C4H2的反应位点预测图

    Figure  1  Prediction of reaction sites of C3H3 and C4H2 (cyan is C atom, white is H atom)

    图  2  (a)C3H3(C1) + C4H2反应路径中反应物、产物、中间体和过渡态的几何构型,(b)C3H3(C1) + C4H2势能面

    Figure  2  (a) Geometry of reactants, products, intermediates and transition states in C3H3(C1) + C4H2 reaction path; (b) PES of C3H3(C1) + C4H2 (Black line is path 1, green line is path 2, and red line is path 3)

    图  3  (a)C3H3(C2) + C4H2反应路径中反应物、产物、中间体和过渡态的几何构型;(b)C3H3(C2) + C4H2势能面

    Figure  3  (a) Geometry of reactants, products, intermediates and transition states in C3H3(C2) + C4H2 reaction path; (b) PES of C3H3(C2) + C4H2 (Green line is path 4, red line is path 5, and black line is path 6)

    图  4  关键反应速率

    Figure  4  Rate of key elementary reactions

    图  5  六条路径的反应速率

    Figure  5  Reaction rate of six paths

    表  1  重要反应活化能计算值与文献值

    Table  1  Calculated values of important reaction activation energy compared with literature values

    Calculated value /(kJ·mol−1)Literature value /(kJ·mol−1)
    C3H3(C1) + C4H2 35.0 35.1[33], 37.2[14]
    C3H3(C2) + C4H2 44.1 44.7[33], 39.8[14]
    H-transfer of six membered rings 173.6, 184.2 186.0[32]
    H-transfer of five membered rings 106.2, 86.5 106.8[13]
    下载: 导出CSV

    表  2  由阿伦尼乌斯方程拟合的速率参数

    Table  2  Rate parameters by fitting the Arrhenius equation

    Reactionk(500)k(1500)k(2500)AnE
    C3H3(C1) + C4H2→CS13.0973×1061.2206×1094.0579×1092.805×1010−0.0237.46
    CS1→CS22.8566×1034.8296×1085.4526×1091.342×10110.0574.75
    CS2→CS37.7582×102.3325×1098.3308×10101.378×10110.57103.32
    CS1→CS44.9170×10−85.8639×1041.6256×1071.355×10100.20172.13
    CS4→CS51.0545×10−51.6020×1075.1514×1096.002×10100.73169.96
    CS1→CS67.6005×10−146.5020×1043.0616×1085.844×10100.88251.26
    CS6→CS74.0193×10107.3702×10111.3944×10124.624×10110.2416.41
    CS7→CS85.7392×10−31.0107×1077.5059×1081.074×10110.17131.69
    C3H3(C2) + C4H2→CS94.5684×1043.9849×1082.5000×1092.739×10100.0456.38
    CS9→CS105.0747×1093.8822×10119.2917×10112.525×10120.0426.76
    CS10→CS111.4792×10−46.0596×1055.2423×1071.909×10100.09137.54
    CS11→CS121.8028×10−32.2416×1072.7569E×1098.041×1090.73140.05
    CS10→CS138.5499×10−101.0388×1061.2311×1092.239×10110.64212.34
    CS13→CS141.8763×10−161.1286×1024.2175×1054.182×10100.10254.87
    CS14→CS151.3840×1062.3066×10101.7325×10113.174×10110.2858.65
    CS15→CS34.1674×1038.6816×1091.8110×10111.566×10110.5686.80
    CS10→CS162.4647×10−109.4006×1035.1025×1062.479×10100.11194.45
    CS16→CS52.2706×10−35.2238×1081.5198×10117.397×1081.62152.21
    下载: 导出CSV
  • [1] 刘鹏. 火焰中多环芳香烃(PAHs)的演变机理研究[D]. 上海: 上海交通大学, 2017.

    LIU Peng. Study on evolution mechanism of polycyclic aromatic hydrocarbons (PAHs) in flame [D]. Shanghai: Shanghai Jiao Tong University, 2017.
    [2] 刘洋, 徐义书, 姚俊杰, 覃龙江, 李煜, 成晓北. 异戊烯醇对甲烷和乙烯的PAH和碳烟生成影响[J]. 燃烧科学与技术,2022,28(2):149−156.

    LIU Yang, XU Yi-shu, YAO Jun-jie, QIN Long-jie, LI Yü, CHEN Xiao-bei. Effects of isopentenol on PAH and soot formation of methane and ethylene[J]. J Combust Sci Technol,2022,28(2):149−156.
    [3] TIWARI M, SAHU S K, PANDIT G G. Distribution of PAHs in different compartment of creek ecosystem: Ecotoxicological concern and human health risk[J]. Environ Toxicol Pharmacol,2017,50:58−66. doi: 10.1016/j.etap.2017.01.008
    [4] WANG Y, CHUNG S H. Soot formation in laminar counterflow flames[J]. Prog Energy Combust Sci,2019,74:152−238. doi: 10.1016/j.pecs.2019.05.003
    [5] RICHTER H, HOWARD J B. Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene, ethylene and benzene flames[J]. Phys Chem Chem Phys,2002,4(11):2038−2055. doi: 10.1039/b110089k
    [6] RICHTER H, HOWARD J B. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways[J]. Prog Energy Combust Sci,2000,26(4/6):565−608. doi: 10.1016/S0360-1285(00)00009-5
    [7] THOMSON M, MITRA T. A radical approach to soot formation[J]. Science,2018,361(6406):978−979. doi: 10.1126/science.aau5941
    [8] COLE J A, BITTNE J D, LONGWELL J P, HOWARD J B. Formation mechanisms of aromatic compounds in aliphatic flames[J]. Combust Flame,1984,56(1):51−70. doi: 10.1016/0010-2180(84)90005-1
    [9] MILLER J A, KLIPPENSTEIN S J. The recombination of propargyl radicals and other reactions on a C6H6 potential[J]. J Phys Chem A,2003,107(39):7783−7799. doi: 10.1021/jp030375h
    [10] GEORGIEVSKILL Y, MILLER J A, KLIPPENSTEIN S J. Association rate constants for reactions between resonance-stabilized radicals: C3H3 + C3H3, C3H3 + C3H5, and C3H5 + C3H5[J]. Phys Chem Chem Phys,2007,9(31):4259−4268. doi: 10.1039/b703261g
    [11] HANSEN N, MILLER J A, WESTMORELAND P R, KASPER T, KOHSE-HÖINGHAUS K, WANG J, COOL T A. Isomer-specific combustion chemistry in allene and propyne flames[J]. Combust Flame,2009,156(11):2153−2164. doi: 10.1016/j.combustflame.2009.07.014
    [12] LIU P, LIN H, YANG Y, SHAO C, GUAN B, HUANG Z. Investigating the Role of CH2 Radicals in the HACA Mechanism[J]. J Phys Chem A,2015,119(13):3261−3268. doi: 10.1021/jp5124162
    [13] TROGOLO D, MARANZANA A, GHIGO G, TONACHINI G. First ring formation by radical addition of propargyl to but-1-ene-3-yne in combustion. Theoretical study of the C7H7 radical system[J]. J Phys Chem A,2014,118(2):427−440. doi: 10.1021/jp4082905
    [14] JIN H, XING L, YANG J, ZHOU Z, FAROOQ A. Continuous butadiyne addition to propargyl: A radical-efficient pathway for polycyclic aromatic hydrocarbons[J]. J Phys Chem Lett,2021,12(33):8109−8114. doi: 10.1021/acs.jpclett.1c02062
    [15] YANG B, LI Y, WEI L, HUANG C, WANG J, TIAN Z, YANG R, SHENG L, ZHANG Y. An experimental study of the premixed benzene/oxygen/argon flame with tunable synchrotron photoionization[J]. Proc Combust Inst,2007,31(1):555−563. doi: 10.1016/j.proci.2006.07.171
    [16] LI Y, HUANG C, WEI L, YANG B, WANG J, TIAN Z, ZHANG T, SHENG L, QI F. An experimental study of rich premixed gasoline/O2 /Ar flame with tunable synchrotron vacuum ultraviolet photoionization[J]. Energy Fuels,2007,21(4):1931−1941. doi: 10.1021/ef0700578
    [17] LI Y, ZHANG L, TIAN Z, YUAN T, WANG J, YANG B, QI F. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy Fuels,2009,23(3):1473−1485. doi: 10.1021/ef800902t
    [18] YUAN W, LI Y, DAGAUT P, YANG J, QI F. Investigation on the pyrolysis and oxidation of toluene over a wide range conditions. I. Flow reactor pyrolysis and jet stirred reactor oxidation[J]. Combust Flame,2015,162(1):3−21. doi: 10.1016/j.combustflame.2014.07.009
    [19] ZHANG J, LU T. Efficient evaluation of electrostatic potential with computerized optimized code[J]. Phys Chem Chem Phys,2021,23(36):20323−20328. doi: 10.1039/D1CP02805G
    [20] LU T, CHEN F. Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm[J]. J Mol Graphics Modell,2012,38:314−323. doi: 10.1016/j.jmgm.2012.07.004
    [21] POLITZER P, MURRARY J S, BULAT F A. Average local ionization energy: A review[J]. J Mol Model,2010,16(11):1731−42. doi: 10.1007/s00894-010-0709-5
    [22] FRISCH M J, TRUCKS G W, SCHLEGE H B, SCUSERIA G E, ROBB M A, CHEESEMAN J R, FOX D J. Gaussian Inc16, revision A. 03[J]. Gaussian Inc, Wallingford, CT, 2016.
    [23] 周赛, 刘虎, 于鹏飞, 袁茂博, 薛景文, 车得福. 基于密度泛函理论的CO2氧化含氮焦炭的机理研究[J]. 燃料化学学报,2022,50(1):19−27.

    ZHOU Sai, LIU Hu, YU Peng-fei, YUAN Mao-bo, XUE Jing-wen, CHE De-fu. Study on the mechanism of CO2 oxidation of nitrogenous coke based on density functional theory[J]. J Fuel Chem Technol,2022,50(1):19−27.
    [24] 刘治港, 田向红, 李言钦. 基于密度泛函理论的高覆盖氧吸附焦炭氧化机理研究[J]. 燃料化学学报,2022,50(8):1−10.

    LIU Gang-zhi, TIAN Xiang-hong, LI Yan-qin. Study on oxidation mechanism of coke with high coverage oxygen adsorption based on density functional theory[J]. J Fuel Chem Technol,2022,50(8):1−10.
    [25] HOU D, YOU X. Reaction kinetics of hydrogen abstraction from polycyclic aromatic hydrocarbons by H atoms[J]. Phys Chem Chem Phys,2017,19(45):30772−30780. doi: 10.1039/C7CP04964A
    [26] LIYUANHE211. Database of frequency scale factors for electronic model chemistries[EB/OL]. https://comp.chem.umn.edu/freqscale/version3b2.htm, 2016−7−28/2017−3−13.
    [27] CANNEAUX S, BOHR F, HENON E. KiSThelP: A program to predict thermodynamic properties and rate constants from quantum chemistry results[J]. J Comput Chem,2014,35(1):82−93. doi: 10.1002/jcc.23470
    [28] RAJ A, MAN P L W, TOTTON T S, SANDER M, SHIRLEY R A, KRAFT M. New polycyclic aromatic hydrocarbon (PAH) surface processes to improve the model prediction of the composition of combustion-generated PAHs and soot[J]. Carbon,2010,48(2):319−332. doi: 10.1016/j.carbon.2009.09.030
    [29] FERNANDEZ R A, ELLINGSON B A, MEANA P R, MARQUES J M, TRUHLAR D G. Symmetry numbers and chemical reaction rates[J]. Theor Chem Acc,2007,118(4):813−826.
    [30] BOUWMAN J, HRODMARSSON H R, ELLISON G B, BODI A, HEMBERGER P. Five birds with one stone: Photoelectron photoion coincidence unveils rich phthalide pyrolysis chemistry[J]. J Phys Chem A,2021,125(8):1738−1746.
    [31] MURDOCH J R. What is the rate-limiting step of a multistep reaction[J]. J Chem Edu,1981,58(1):32−36.
    [32] LIU P, ZHANG Y, LI Z, ANTHONY B, LIN H, SARATHY S M, ROBERTS. Computational study of polycyclic aromatic hydrocarbons growth by vinylacetylene addition[J]. Combust Flame,2019,202:276−291. doi: 10.1016/j.combustflame.2019.01.023
    [33] MARAZANA A, INDARTO A, GHIGO G, GLAUCO T. First carbon ring closures started by the combustive radical addition of propargyl to butadiyne. A theoretical study[J]. Combust Flame,2013,160(11):2333−2342. doi: 10.1016/j.combustflame.2013.05.024
    [34] SOBEREVA. The accuracy of various post HF methods is simple and horizontal measurement[EB/OL]. http://bbs.keinsci.com/thread-6005-1-1.html, 2017-5-29.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  207
  • HTML全文浏览量:  54
  • PDF下载量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 修回日期:  2022-07-06
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2023-04-15

目录

    /

    返回文章
    返回