留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Co掺杂La1.5Sr0.5NiO4 + δ阴极材料的制备及电化学稳定性能研究

李宁 李松波 安胜利 杜旭 薛良美 倪洋

李宁, 李松波, 安胜利, 杜旭, 薛良美, 倪洋. Co掺杂La1.5Sr0.5NiO4 + δ阴极材料的制备及电化学稳定性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60057-4
引用本文: 李宁, 李松波, 安胜利, 杜旭, 薛良美, 倪洋. Co掺杂La1.5Sr0.5NiO4 + δ阴极材料的制备及电化学稳定性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60057-4
LI Ning, LI Song-bo, AN Sheng-li, DU Xu, XUE Liang-mei, NI Yang. Preparation and electrochemical stability performance of Co doped La1.5Sr0.5NiO4 + δ cathode materials[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60057-4
Citation: LI Ning, LI Song-bo, AN Sheng-li, DU Xu, XUE Liang-mei, NI Yang. Preparation and electrochemical stability performance of Co doped La1.5Sr0.5NiO4 + δ cathode materials[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60057-4

Co掺杂La1.5Sr0.5NiO4 + δ阴极材料的制备及电化学稳定性能研究

doi: 10.1016/S1872-5813(22)60057-4
基金项目: 国家自然科学基金(51974167)和内蒙古自治区高等学校科学研究项目(NJZZ22449)资助
详细信息
    作者简介:

    李松波(1972–),教授,通讯联系人,Email: lisongbo@imust.edu.cn

  • 中图分类号: TM911.4

Preparation and electrochemical stability performance of Co doped La1.5Sr0.5NiO4 + δ cathode materials

Funds: The project was supported by National Natural Science Foundation of China (51974167) and Scientific Research Program of Inner Mongolia higher education institutions (NJZZ22449)
  • 摘要: 利用溶胶凝胶法合成了Co掺杂La1.5Sr0.5NiO4 + δ的阴极材料La1.5Sr0.5Ni1−xCoxO4 + δx=0、0.2、0.4、0.6)。通过X射线衍射、X射线光电子能谱、热重、热膨胀系数的测定和SEM探究了材料的相结构、元素组成、热力学性能和表面形貌。实验结果表明,全部试样均成功合成出具有类钙钛矿型结构的单一纯相,掺杂Co元素使材料的热膨胀系数有所增加。为了探究材料应用于SOFC阴极的可行性,进行了电导率及电化学阻抗谱的测定。电导率随着Co元素掺杂量的提高而升高,800 ℃时La1.5Sr0.5Ni0.6Co0.4O4 + δ电导率最高,为51.21 S/cm,当Co的掺杂量大于0.4时,电导率明显下降。该材料在电化学阻抗谱测试中也呈现出了最低的极化电阻,在700 ℃时其值为4.180 Ω·cm2,表现出较好的优于其他部分材料的电化学性能。
  • 图  1  (a) LSNC-xx=0、0.2、0.4、0.6)的XRD谱图;(b) LSNC-xx=0、0.2、0.4、0.6)的XRD主峰放大谱图

    Figure  1  (a) XRD patterns of LSNC-xx=0, 0.2, 0.4, 0.6);(b) Magnified XRD spectra of LSNC-x (x=0, 0.2, 0.4, 0.6)

    图  2  (a) LSNC-xx=0、0.2、0.4、0.6)在30−800 ℃的热膨胀曲线;(b) SDC在50−800 ℃的热膨胀曲线

    Figure  2  (a) Thermal expansion curves of LSNC-x (x=0, 0.2, 0.4, 0.6) samples at 30−800 ℃; (b) thermal expansion curves of SDC at 50−800 ℃

    图  3  LSNC-x在400−800 ℃的电导率曲线

    Figure  3  Curves of electrical conductivity for LSNC-x (x=0, 0.2, 0.4, 0.6) samples at 400−800 ℃

    图  4  LSNC-xx=0、0.2、0.4、0.6)的XPS谱图

    Figure  4  XPS spectra of LSNC-x (x=0, 0.2, 0.4, 0.6)

    (a): O 1s;(b): Ni 2p;(c): Co 2p

    图  5  LSNC-x(x=0.2、0.4、0.6)为阴极的对称电池的SEM照片

    Figure  5  SEM images of symmetrical cells with LSNC-x (x =0.2, 0.4, 0.6) as cathodes

    图  6  LSNC-x (x=0.2、0.4、0.6)阴极材料的TG曲线

    Figure  6  TG curves of LSNC-x (x=0.2, 0.4, 0.6) cathode materials

    图  7  (a) LSNC-x (x=0、0.2、0.4、0.6)在700 ℃时的交流阻抗谱; (b) LSNC-0.4在不同温度下的电化学阻抗谱

    Figure  7  (a) Electrochemical impedance spectroscopy of LSNC-x (x=0, 0.2, 0.4, 0.6) at 700 ℃; (b) Electrochemical impedance spectra of LSNC-0.4 at different temperatures

    表  1  LSNC-x晶体结构的晶胞参数

    Table  1  Cell parameters of LSNC-x crystal structure

    Crystal cell parameterLa1.5Sr0.5NiO4 + δLa1.5Sr0.5Co0.2Ni0.8O4 + δLa1.5Sr0.5Co0.4Ni0.6O4 + δLa1.5Sr0.5Co0.6Ni0.4O4 + δ
    a/ai3.812543.819363.824373.82768
    b/ai3.812543.819363.824373.82768
    c/ai12.7401612.7032412.6834812.66534
    V/ai3185.184185.30185.506185.590
    下载: 导出CSV

    表  2  四组样品和SDC的热膨胀系数值

    Table  2  Thermal expansion coefficient values of four groups of samples and SDC

    xSampleCoefficient of thermal expansion
    0La1.5Sr0.5NiO4 + δ11.82 × 10−6 K−1
    0.2La1.5Sr0.5Ni0.8Co0.2O4 + δ14.95 × 10−6 K−1
    0.4La1.5Sr0.5Ni0.6Co0.4O4 + δ15.53 × 10−6 K−1
    0.6La1.5Sr0.5Ni0.4Co0.6O4 + δ17.66 × 10−6 K−1
    SDCSm0.2Ce0.8O1.913.43 × 10−6 K−1
    下载: 导出CSV

    表  3  LSNC-xx=0、0.2、0.4、0.6)的XPS谱图O 1s峰拟合

    Table  3  Fitting results of O 1s peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)

    SampleOmoisture /eVOadsorbed /eVOvacancy /eVOlattice /eV(Oadsorbed + Ovacancy)/Olattice
    LSN532.46531.48530.60528.902.78
    LSNC0.2532.28531.28530.94528.733.17
    LSNC0.4532.12531.13530.97528.353.24
    LSNC0.6532.10531.45530.88529.123.26
    下载: 导出CSV

    表  4  LSNC-xx=0、0.2、0.4、0.6)的XPS谱图Ni 2p峰拟合

    Table  4  Fitting results of Ni 2p peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)

    SampleNi3+ 2p1/2Ni3+ 2p1/2Ni3+ 2p1/2Ni3+ 2p1/2Ni3+ 2p1/2Ni3+ 2p1/2
    LSN862.24860.70855.38851.6056.2543.75
    LSNC0.2862.20860.72855.49851.6149.5350.48
    LSNC0.4862.25860.74855.21851.5449.4750.53
    LSNC0.6862.26861.01855.39851.6840.7759.23
    下载: 导出CSV

    表  5  LSNC-xx=0、0.2、0.4、0.6)的XPS谱图Co 2p峰拟合

    Table  5  Fitting results of Co 2p peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)

    Sample$ {\text{Co}}^{3 + }\;{2p_{{1/2}}} $$ {\text{Co}}^{2 + }\;{2p_{{1/2}}} $$ {\text{Co}}^{3 + }\;{2p_{{3/2}}} $$ {\text{Co}}^{2 + }\;{2p_{{3/2}}} $$ {\text{Co}}^{3 + }/\text{%} $$ {\text{Co}}^{2 + }/\text{%} $
    LSNC0.2795.47796.82780.47782.0194.405.610
    LSNC0.4795.22796.89780.38782.0385.0614.94
    LSNC0.6795.52796.71780.41782.1367.2332.77
    下载: 导出CSV

    表  6  LSNC-x (x=0、0.2、0.4、0.6)在700 的极化电阻值

    Table  6  Polarization resistance values of LSNC-x (x=0, 0.2, 0.4, 0.6) at 700 ℃

    xSamplePolarization resistance value
    /(Ω·cm2
    0La1.5Sr0.5NiO4 + δ4.426
    0.2La1.5Sr0.5Ni0.8Co0.2O4 + δ4.355
    0.4La1.5Sr0.5Ni0.6Co0.4O4 + δ4.180
    0.6La1.5Sr0.5Ni0.4Co0.6O4 + δ6.238
    下载: 导出CSV

    表  7  与已有阴极材料极化电阻对比表

    Table  7  Comparison of polarization resistance with existing cathode materials

    Cathode materialPolarization resistance value /(Ω·cm2
    La1.5Sr0.5Ni0.6Co0.4O4 + δ4.18
    La1.8Sr0.2NiO4 + δ5.31
    La1.4Sr0.6NiO4 + δ7.62
    下载: 导出CSV
  • [1] BOREAVE A, TAN H, ROCHE V. Oxygen mobility in lanthanum nickelate catalysts for deep oxidation of propane[J]. Solid State Ionics,2008,179(21/26):1071−1075. doi: 10.1016/j.ssi.2008.01.052
    [2] LI Y H, GEMMEN R, LIU X B. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes[J]. J Power Sources,2010,195(11):3345−3358. doi: 10.1016/j.jpowsour.2009.12.062
    [3] JIANG S. Development and optimization of electrode materials in solid oxide fuel cells[J]. Battery,2002,32(3):133−137.
    [4] KHARTON V V, TSIPIS E V, YAREMCHENKO A A. Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4 + δ[J]. Solid State Ionics,2004,166(3-4):327−337. doi: 10.1016/j.ssi.2003.11.020
    [5] CHEN Y, LIAO Q, WEI Y Y A. CO2-stable K2NiF4-type oxide (Nd0.9La0.1)(2)(Ni0.74Cu0.21Al0.05)O4 + δ for oxygen separation[J]. Ind Eng Chem Res,2013,52(25):8571−8578.
    [6] ZHAO F, WANG X F, WANG Z Y. K2NiF4 type La2−xSrxCo0.8Ni0.2O4 + δ as the cathodes for solid oxide fuel cells[J]. Solid State Ionics,2008,179(27/32):1450−1453. doi: 10.1016/j.ssi.2007.11.033
    [7] HAO J H, LI Q, SUN L P. Synthesis and performance of Nd2−xSrxCuO4 cathode materials for IT-SOFC[J]. Chin J Inorg Chem,2009,25(10):1818−1822.
    [8] WANG Y S, NIE H W, WANG S R. A2−αAα' BO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A ' = Sr; B = Fe, Co)[J]. Mater Lett,2006,60(9/10):1174−1178. doi: 10.1016/j.matlet.2005.10.104
    [9] NIE H W, WEN T L, WANG S R. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αAα' MO4 (A = Pr, Sm; A ' = Sr; M = Mn, Ni; α= 0.3, 0.6) as a new cathode for SOFC[J]. Solid State Ionics,2006,177(19/25):1929−1932. doi: 10.1016/j.ssi.2006.01.003
    [10] 黄端平, 徐庆. 新型中温固体氧化物燃料电池阴极材料的研究[C]//中国硅酸盐学会陶瓷分会2006学术年会论文专辑(上). 杭州: 武汉理工大学出版社, 2006: 37−42.

    HUANG Duan-ping, XU Qing. Study on novel medium temperature solid oxide fuel cell cathode material[C]//China Ceramics Society Ceramic Branch 2006 Annual Conference Paper Album (I). Hangzhou: Wuhan University of Technology Press, 2006: 37−42.
    [11] KHARTON V V, YAREMCHENKO A A, TSIPIS E V. Oxygen transport and electrochemical activity of La2NiO4-based cathode materials[C]. 8th International Symposium on Solid Oxide Fuel Cells, 2003: 561−570.
    [12] AMOW G, WHITFIELD P S, DAVIDSON I J. Structural and sintering characteristics of the La2Ni1−xCoxO4 + δ series[J]. Ceram Int,2004,30(7):1635−1639. doi: 10.1016/j.ceramint.2003.12.164
    [13] 华瑛. 材料的热膨胀性能及其影响因素[J]. 上海钢研,2005,26(2):60−63.

    HUA Ying. Thermal expansion properties of materials and its influencing factors[J]. Shanghai kair,2005,26(2):60−63.
    [14] FU D, JIN F, HE T. A-site calcium-doped Pr1−xCaxBaCo2O5 + δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells[J]. J Power Sources,2016,313(5):134−141.
    [15] 王悦. B位有序的Co基双钙钛矿中温固体氧化物燃料电池阴极材料Sr2Co1−xNbxFeO5 + δ的性能[D]. 吉林: 吉林大学, 2017.

    WANG Yue. Properties of Sr2Co1−xNbxFeO5 + δ as cathode material of Co-based double perovskite intermediate-temperature solid oxide fuel cell with Ordered B-position[D]. Jilin: Jilin university, 2017.
    [16] 冯晓霞, 谢志翔, 王竹梅. 中温固体氧化物燃料电池阴极材料LaFe1−xCuxO3−δ的制备与性能研究[J]. 中国陶瓷,2020,56(3):27−32.

    FENG Xiao-xia, XIE Zhi-xiang, WANG Zhu-mei. Preparation and properties of LaFe1−xCuxO3−δ cathode material for medium-temperature solid oxide fuel cell[J]. Chin Ceram,2020,56(3):27−32.
    [17] 范宇航, 孙丽萍, 霍丽华, 赵辉, Jean-Marc Bassat, Aline Rougier, Sebastien Fourcade, Jean-Claude Grenier. 钴掺杂Sr1.5La0.5MnO4的合成及高温电化学性能研究[J]. 无机化学学报,2016,32(10):1730−1738.

    FAN Yu-hang, SUN Li-ping, HUO Li-hua, ZHAO Hui, Jean-Marc Bassat, Aline Rougier, Sebastien Fourcade, Jean-Claude Grenier. Synthesis and high temperature electrochemical properties of Cobalt doped Sr1.5La0.5MnO4[J]. Chin J Inorg Chem,2016,32(10):1730−1738.
    [18] JIA W, HUANG Z, SUN W. Flexible A-site doping La0.6−xMxSr0.4Co0.2Fe0.8O3 (M=Ca, Ba, Bi; x=0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration[J]. J Power Sources,2021,490(8):229564.
    [19] 李婷婷, 王振华, 孙旺, 白羽, 孙克宁, 乔金硕. 质子导体固体氧化物燃料电池Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4 + δ阴极材料制备与性能[J]. 硅酸盐学报,2021,49(12):2636−2643.

    LI Ting-ting, WANG Zhen-hua, SUN Wang, BAI Yu, SUN Ke-ning, QIAO Jin-shuo. Proton conductor solid oxide fuel cell Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4 + δ cathode material preparation and performance[J]. J Chin Ceram Soc,2021,49(12):2636−2643.
    [20] KIM S J, AKBAY T, MATSUDA J. Strain effects on oxygen reduction activity of Pr2NiO4 caused by gold bulk dispersion for low temperature solid oxide fuel cells[J]. ACS Appl Energy Mater,2019,2(2):1210−1220. doi: 10.1021/acsaem.8b01776
    [21] PRABU M, KETPANG K, SHANMUGAM S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries[J]. Nanoscale,2014,6(6):3173−3181. doi: 10.1039/c3nr05835b
    [22] JIN F J, LIU X L, CHU X Y. Effect of nonequivalent substitution of Pr3 + /4 + with Ca2 + in PrBaCoFeO5 + δ as cathodes for IT-SOFC[J]. J Mater Sci,2021,56(2):1147−1161. doi: 10.1007/s10853-020-05375-y
    [23] LIM C, YANG Y, SIN Y-W. Ca- and Ni-doped Pr0.5Ba0.5FeO3−δ as a highly active and robust cathode for high-temperature solid oxide fuel cell[J]. Energy Fuels,2020,34(9):11458−11463.
    [24] 孟祥伟. 中温固体氧化物燃料电池阴极材料Pr1−xSrxCo0.8Fe0.2O3−δ的性能研究[D]. 吉林: 吉林大学, 2009.

    MENG Xiang-wei. Properties of Pr1−xSrxCo0.8Fe0.2O3−δ cathode material for Medium-temperature solid oxide fuel cell[D]. Jilin: Jilin university, 2009.
    [25] 封常乾, 隋静, 杨鹏. 疏松多孔Ce0.9Gd0.1O1.95电解质骨架对GdBa0.7Sr0.3Co2O(5 + δ)阴极材料性能的影响[J]. 青岛科技大学学报(自然科学版),2020,41(4):6−81 + 87.

    FENG Chang-qian, SUI Jing, YANG Peng. Effect of Loose porous Ce0.9Gd0.1O1.95 electrolyte skeleton on the properties of GdBa0.7Sr0.3Co2O(5 + δ) cathode materials[J]. J Qingdao Univ Sci Technol (Nat Sci),2020,41(4):6−81 + 87.
    [26] REN R Z, WANG Z H, XU C M. Tuning the defect of triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite toward activity enhanced cathode of protonic ceramic fuel cells[J]. J Mater Chem A,2019,7(31):18365−18372. doi: 10.1039/C9TA04335G
    [27] VIBHU V, ROUGIER A, NICOLLET C. La2−xPrxNiO4 + δ as suitable cathodes for metal supported SOFCs[J]. Solid State Ionics,2015,278(21/23):32−37.
    [28] LIU J J, QIU W H, YU L Y. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O-2 cathode materials by low-temperature solid-state reaction[J]. J Alloys Compounds,2008,449(1/2):326−330. doi: 10.1016/j.jallcom.2006.01.149
    [29] BOEHM E, BASSAT J M, DORDOR P. Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4 + δ oxides[J]. Solid State Ionics,2005,176(37/38):2717−2725. doi: 10.1016/j.ssi.2005.06.033
    [30] 龚明光, 陆丽华, 金江, 张华. 类钙钛矿复合氧化物La2−xSrxNiO4的合成及电学性能[J]. 电源技术,2009,33(9):798−801. doi: 10.3969/j.issn.1002-087X.2009.09.016

    GONG Ming-guang, LU Li-hua, JIN Jiang, ZHANG Hua. Synthesis and electrical properties of perovskite-like composite oxide La2−xSrxNiO4[J]. Power Supply Technol,2009,33(9):798−801. doi: 10.3969/j.issn.1002-087X.2009.09.016
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  3
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 录用日期:  2022-07-25
  • 修回日期:  2022-07-19
  • 网络出版日期:  2022-08-15

目录

    /

    返回文章
    返回