Preparation and electrochemical stability performance of Co doped La1.5Sr0.5NiO4 + δ cathode materials
-
摘要: 利用溶胶凝胶法合成了Co掺杂La1.5Sr0.5NiO4 + δ的阴极材料La1.5Sr0.5Ni1−xCoxO4 + δ(x=0、0.2、0.4、0.6)。通过X射线衍射、X射线光电子能谱、热重、热膨胀系数的测定和SEM探究了材料的相结构、元素组成、热力学性能和表面形貌。实验结果表明,全部试样均成功合成出具有类钙钛矿型结构的单一纯相,掺杂Co元素使材料的热膨胀系数有所增加。为了探究材料应用于SOFC阴极的可行性,进行了电导率及电化学阻抗谱的测定。电导率随着Co元素掺杂量的提高而升高,800 ℃时La1.5Sr0.5Ni0.6Co0.4O4 + δ电导率最高,为51.21 S/cm,当Co的掺杂量大于0.4时,电导率明显下降。该材料在电化学阻抗谱测试中也呈现出了最低的极化电阻,在700 ℃时其值为4.180 Ω·cm2,表现出较好的优于其他部分材料的电化学性能。Abstract: The cathode material La1.5Sr0.5Ni1−xCoxO4 + δ (x=0, 0.2, 0.4, 0.6) of Co doping La1.5Sr0.5NiO4 + δ (x = 0, 0.2, 0.4, 0.6) is synthesized using a sol gel method. Through the measurement of X-ray diffraction, X-ray photoelectron spectroscopy, thermogravimetric, the thermal expansion coefficient, the scanning electron microscope tests the phase structure, elements, thermodynamic properties, and surface morphology of the material. The result shows, all samples successfully synthesized a single pure phase with perovskite-like structure, the doping of Co elements has increased the thermal expansion coefficient of the material. In order to explore the material to be used in the feasibility of the SOFC cathode, the measurement of electrical conductivity and electrochemical impedance spectroscopy was carried out. Conductivity increases with the increase of Co element doping, at 800 ℃, La1.5Sr0.5Ni0.6Co0.4O4 + δ conductivity is the highest, with 51.21 S/cm, when the value of Co is greater than 0.4, the conductivity is significantly reduced. The material also exhibits the lowest polarization resistance in electrochemical impedance spectrum test, at 700 ℃ value of 4.180 Ω·cm2, exhibits better electrochemical properties.
-
Key words:
- solid oxide fuel cell /
- perovskite-like structure /
- cathode material
-
表 1 LSNC-x晶体结构的晶胞参数
Table 1 Cell parameters of LSNC-x crystal structure
Crystal cell parameter La1.5Sr0.5NiO4 + δ La1.5Sr0.5Co0.2Ni0.8O4 + δ La1.5Sr0.5Co0.4Ni0.6O4 + δ La1.5Sr0.5Co0.6Ni0.4O4 + δ a/ai 3.81254 3.81936 3.82437 3.82768 b/ai 3.81254 3.81936 3.82437 3.82768 c/ai 12.74016 12.70324 12.68348 12.66534 V/ai3 185.184 185.30 185.506 185.590 表 2 四组样品和SDC的热膨胀系数值
Table 2 Thermal expansion coefficient values of four groups of samples and SDC
x Sample Coefficient of thermal expansion 0 La1.5Sr0.5NiO4 + δ 11.82 × 10−6 K−1 0.2 La1.5Sr0.5Ni0.8Co0.2O4 + δ 14.95 × 10−6 K−1 0.4 La1.5Sr0.5Ni0.6Co0.4O4 + δ 15.53 × 10−6 K−1 0.6 La1.5Sr0.5Ni0.4Co0.6O4 + δ 17.66 × 10−6 K−1 SDC Sm0.2Ce0.8O1.9 13.43 × 10−6 K−1 表 3 LSNC-x(x=0、0.2、0.4、0.6)的XPS谱图O 1s峰拟合
Table 3 Fitting results of O 1s peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)
Sample Omoisture /eV Oadsorbed /eV Ovacancy /eV Olattice /eV (Oadsorbed + Ovacancy)/Olattice LSN 532.46 531.48 530.60 528.90 2.78 LSNC0.2 532.28 531.28 530.94 528.73 3.17 LSNC0.4 532.12 531.13 530.97 528.35 3.24 LSNC0.6 532.10 531.45 530.88 529.12 3.26 表 4 LSNC-x(x=0、0.2、0.4、0.6)的XPS谱图Ni 2p峰拟合
Table 4 Fitting results of Ni 2p peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)
Sample Ni3+ 2p1/2 Ni3+ 2p1/2 Ni3+ 2p1/2 Ni3+ 2p1/2 Ni3+ 2p1/2 Ni3+ 2p1/2 LSN 862.24 860.70 855.38 851.60 56.25 43.75 LSNC0.2 862.20 860.72 855.49 851.61 49.53 50.48 LSNC0.4 862.25 860.74 855.21 851.54 49.47 50.53 LSNC0.6 862.26 861.01 855.39 851.68 40.77 59.23 表 5 LSNC-x(x=0、0.2、0.4、0.6)的XPS谱图Co 2p峰拟合
Table 5 Fitting results of Co 2p peak of LSNC-x XPS graph (x=0, 0.2, 0.4, 0.6)
Sample $ {\text{Co}}^{3 + }\;{2p_{{1/2}}} $ $ {\text{Co}}^{2 + }\;{2p_{{1/2}}} $ $ {\text{Co}}^{3 + }\;{2p_{{3/2}}} $ $ {\text{Co}}^{2 + }\;{2p_{{3/2}}} $ $ {\text{Co}}^{3 + }/\text{%} $ $ {\text{Co}}^{2 + }/\text{%} $ LSNC0.2 795.47 796.82 780.47 782.01 94.40 5.610 LSNC0.4 795.22 796.89 780.38 782.03 85.06 14.94 LSNC0.6 795.52 796.71 780.41 782.13 67.23 32.77 表 6 LSNC-x (x=0、0.2、0.4、0.6)在700 ℃的极化电阻值
Table 6 Polarization resistance values of LSNC-x (x=0, 0.2, 0.4, 0.6) at 700 ℃
x Sample Polarization resistance value
/(Ω·cm2)0 La1.5Sr0.5NiO4 + δ 4.426 0.2 La1.5Sr0.5Ni0.8Co0.2O4 + δ 4.355 0.4 La1.5Sr0.5Ni0.6Co0.4O4 + δ 4.180 0.6 La1.5Sr0.5Ni0.4Co0.6O4 + δ 6.238 表 7 与已有阴极材料极化电阻对比表
Table 7 Comparison of polarization resistance with existing cathode materials
Cathode material Polarization resistance value /(Ω·cm2) La1.5Sr0.5Ni0.6Co0.4O4 + δ 4.18 La1.8Sr0.2NiO4 + δ 5.31 La1.4Sr0.6NiO4 + δ 7.62 -
[1] BOREAVE A, TAN H, ROCHE V. Oxygen mobility in lanthanum nickelate catalysts for deep oxidation of propane[J]. Solid State Ionics,2008,179(21/26):1071−1075. doi: 10.1016/j.ssi.2008.01.052 [2] LI Y H, GEMMEN R, LIU X B. Oxygen reduction and transportation mechanisms in solid oxide fuel cell cathodes[J]. J Power Sources,2010,195(11):3345−3358. doi: 10.1016/j.jpowsour.2009.12.062 [3] JIANG S. Development and optimization of electrode materials in solid oxide fuel cells[J]. Battery,2002,32(3):133−137. [4] KHARTON V V, TSIPIS E V, YAREMCHENKO A A. Surface-limited oxygen transport and electrode properties of La2Ni0.8Cu0.2O4 + δ[J]. Solid State Ionics,2004,166(3-4):327−337. doi: 10.1016/j.ssi.2003.11.020 [5] CHEN Y, LIAO Q, WEI Y Y A. CO2-stable K2NiF4-type oxide (Nd0.9La0.1)(2)(Ni0.74Cu0.21Al0.05)O4 + δ for oxygen separation[J]. Ind Eng Chem Res,2013,52(25):8571−8578. [6] ZHAO F, WANG X F, WANG Z Y. K2NiF4 type La2−xSrxCo0.8Ni0.2O4 + δ as the cathodes for solid oxide fuel cells[J]. Solid State Ionics,2008,179(27/32):1450−1453. doi: 10.1016/j.ssi.2007.11.033 [7] HAO J H, LI Q, SUN L P. Synthesis and performance of Nd2−xSrxCuO4 cathode materials for IT-SOFC[J]. Chin J Inorg Chem,2009,25(10):1818−1822. [8] WANG Y S, NIE H W, WANG S R. A2−αAα' BO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A ' = Sr; B = Fe, Co)[J]. Mater Lett,2006,60(9/10):1174−1178. doi: 10.1016/j.matlet.2005.10.104 [9] NIE H W, WEN T L, WANG S R. Preparation, thermal expansion, chemical compatibility, electrical conductivity and polarization of A2−αAα' MO4 (A = Pr, Sm; A ' = Sr; M = Mn, Ni; α= 0.3, 0.6) as a new cathode for SOFC[J]. Solid State Ionics,2006,177(19/25):1929−1932. doi: 10.1016/j.ssi.2006.01.003 [10] 黄端平, 徐庆. 新型中温固体氧化物燃料电池阴极材料的研究[C]//中国硅酸盐学会陶瓷分会2006学术年会论文专辑(上). 杭州: 武汉理工大学出版社, 2006: 37−42.HUANG Duan-ping, XU Qing. Study on novel medium temperature solid oxide fuel cell cathode material[C]//China Ceramics Society Ceramic Branch 2006 Annual Conference Paper Album (I). Hangzhou: Wuhan University of Technology Press, 2006: 37−42. [11] KHARTON V V, YAREMCHENKO A A, TSIPIS E V. Oxygen transport and electrochemical activity of La2NiO4-based cathode materials[C]. 8th International Symposium on Solid Oxide Fuel Cells, 2003: 561−570. [12] AMOW G, WHITFIELD P S, DAVIDSON I J. Structural and sintering characteristics of the La2Ni1−xCoxO4 + δ series[J]. Ceram Int,2004,30(7):1635−1639. doi: 10.1016/j.ceramint.2003.12.164 [13] 华瑛. 材料的热膨胀性能及其影响因素[J]. 上海钢研,2005,26(2):60−63.HUA Ying. Thermal expansion properties of materials and its influencing factors[J]. Shanghai kair,2005,26(2):60−63. [14] FU D, JIN F, HE T. A-site calcium-doped Pr1−xCaxBaCo2O5 + δ double perovskites as cathodes for intermediate-temperature solid oxide fuel cells[J]. J Power Sources,2016,313(5):134−141. [15] 王悦. B位有序的Co基双钙钛矿中温固体氧化物燃料电池阴极材料Sr2Co1−xNbxFeO5 + δ的性能[D]. 吉林: 吉林大学, 2017.WANG Yue. Properties of Sr2Co1−xNbxFeO5 + δ as cathode material of Co-based double perovskite intermediate-temperature solid oxide fuel cell with Ordered B-position[D]. Jilin: Jilin university, 2017. [16] 冯晓霞, 谢志翔, 王竹梅. 中温固体氧化物燃料电池阴极材料LaFe1−xCuxO3−δ的制备与性能研究[J]. 中国陶瓷,2020,56(3):27−32.FENG Xiao-xia, XIE Zhi-xiang, WANG Zhu-mei. Preparation and properties of LaFe1−xCuxO3−δ cathode material for medium-temperature solid oxide fuel cell[J]. Chin Ceram,2020,56(3):27−32. [17] 范宇航, 孙丽萍, 霍丽华, 赵辉, Jean-Marc Bassat, Aline Rougier, Sebastien Fourcade, Jean-Claude Grenier. 钴掺杂Sr1.5La0.5MnO4的合成及高温电化学性能研究[J]. 无机化学学报,2016,32(10):1730−1738.FAN Yu-hang, SUN Li-ping, HUO Li-hua, ZHAO Hui, Jean-Marc Bassat, Aline Rougier, Sebastien Fourcade, Jean-Claude Grenier. Synthesis and high temperature electrochemical properties of Cobalt doped Sr1.5La0.5MnO4[J]. Chin J Inorg Chem,2016,32(10):1730−1738. [18] JIA W, HUANG Z, SUN W. Flexible A-site doping La0.6−xMxSr0.4Co0.2Fe0.8O3 (M=Ca, Ba, Bi; x=0, 0.1, 0.2) as novel cathode material for intermediate-temperature solid oxide fuel cells: A first-principles study and experimental exploration[J]. J Power Sources,2021,490(8):229564. [19] 李婷婷, 王振华, 孙旺, 白羽, 孙克宁, 乔金硕. 质子导体固体氧化物燃料电池Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4 + δ阴极材料制备与性能[J]. 硅酸盐学报,2021,49(12):2636−2643.LI Ting-ting, WANG Zhen-hua, SUN Wang, BAI Yu, SUN Ke-ning, QIAO Jin-shuo. Proton conductor solid oxide fuel cell Pr1.8Ba0.2Ni0.5Cu0.4Co0.1O4 + δ cathode material preparation and performance[J]. J Chin Ceram Soc,2021,49(12):2636−2643. [20] KIM S J, AKBAY T, MATSUDA J. Strain effects on oxygen reduction activity of Pr2NiO4 caused by gold bulk dispersion for low temperature solid oxide fuel cells[J]. ACS Appl Energy Mater,2019,2(2):1210−1220. doi: 10.1021/acsaem.8b01776 [21] PRABU M, KETPANG K, SHANMUGAM S. Hierarchical nanostructured NiCo2O4 as an efficient bifunctional non-precious metal catalyst for rechargeable zinc–air batteries[J]. Nanoscale,2014,6(6):3173−3181. doi: 10.1039/c3nr05835b [22] JIN F J, LIU X L, CHU X Y. Effect of nonequivalent substitution of Pr3 + /4 + with Ca2 + in PrBaCoFeO5 + δ as cathodes for IT-SOFC[J]. J Mater Sci,2021,56(2):1147−1161. doi: 10.1007/s10853-020-05375-y [23] LIM C, YANG Y, SIN Y-W. Ca- and Ni-doped Pr0.5Ba0.5FeO3−δ as a highly active and robust cathode for high-temperature solid oxide fuel cell[J]. Energy Fuels,2020,34(9):11458−11463. [24] 孟祥伟. 中温固体氧化物燃料电池阴极材料Pr1−xSrxCo0.8Fe0.2O3−δ的性能研究[D]. 吉林: 吉林大学, 2009.MENG Xiang-wei. Properties of Pr1−xSrxCo0.8Fe0.2O3−δ cathode material for Medium-temperature solid oxide fuel cell[D]. Jilin: Jilin university, 2009. [25] 封常乾, 隋静, 杨鹏. 疏松多孔Ce0.9Gd0.1O1.95电解质骨架对GdBa0.7Sr0.3Co2O(5 + δ)阴极材料性能的影响[J]. 青岛科技大学学报(自然科学版),2020,41(4):6−81 + 87.FENG Chang-qian, SUI Jing, YANG Peng. Effect of Loose porous Ce0.9Gd0.1O1.95 electrolyte skeleton on the properties of GdBa0.7Sr0.3Co2O(5 + δ) cathode materials[J]. J Qingdao Univ Sci Technol (Nat Sci),2020,41(4):6−81 + 87. [26] REN R Z, WANG Z H, XU C M. Tuning the defect of triple conducting oxide BaCo0.4Fe0.4Zr0.1Y0.1O3–δ perovskite toward activity enhanced cathode of protonic ceramic fuel cells[J]. J Mater Chem A,2019,7(31):18365−18372. doi: 10.1039/C9TA04335G [27] VIBHU V, ROUGIER A, NICOLLET C. La2−xPrxNiO4 + δ as suitable cathodes for metal supported SOFCs[J]. Solid State Ionics,2015,278(21/23):32−37. [28] LIU J J, QIU W H, YU L Y. Synthesis and electrochemical characterization of layered Li(Ni1/3Co1/3Mn1/3)O-2 cathode materials by low-temperature solid-state reaction[J]. J Alloys Compounds,2008,449(1/2):326−330. doi: 10.1016/j.jallcom.2006.01.149 [29] BOEHM E, BASSAT J M, DORDOR P. Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4 + δ oxides[J]. Solid State Ionics,2005,176(37/38):2717−2725. doi: 10.1016/j.ssi.2005.06.033 [30] 龚明光, 陆丽华, 金江, 张华. 类钙钛矿复合氧化物La2−xSrxNiO4的合成及电学性能[J]. 电源技术,2009,33(9):798−801. doi: 10.3969/j.issn.1002-087X.2009.09.016GONG Ming-guang, LU Li-hua, JIN Jiang, ZHANG Hua. Synthesis and electrical properties of perovskite-like composite oxide La2−xSrxNiO4[J]. Power Supply Technol,2009,33(9):798−801. doi: 10.3969/j.issn.1002-087X.2009.09.016 -