留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst

LI Bing-shuo FENG Bi-xuan WU Kai-ye YANG Tian-hua

李秉硕, 冯薜萱, 吴开页, 杨天华. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60061-6
引用本文: 李秉硕, 冯薜萱, 吴开页, 杨天华. Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60061-6
LI Bing-shuo, FENG Bi-xuan, WU Kai-ye, YANG Tian-hua. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60061-6
Citation: LI Bing-shuo, FENG Bi-xuan, WU Kai-ye, YANG Tian-hua. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60061-6

Ni-Cu-Ru/HZSM-5催化木质素生物油加氢脱氧制芳香烃的研究

doi: 10.1016/S1872-5813(22)60061-6
详细信息
  • 中图分类号: TK6

Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst

Funds: The project was supported by the National Natural Science Foundation of China (51906165, 52176195).
More Information
  • 摘要: 木质素所得生物油(LDB)成分相对复杂对其后续利用产生巨大挑战。本研究以LDB为原料,在超临界乙醇条件下(320 ℃,14 MPa),以NaOH和负载金属(Ni、Cu和Ru)共同改性的HZSM-5为催化剂制备富含芳香烃的生物油。结果表明,脱硅处理后负载Ni、Cu和Ru三种金属制得的Ni-Cu-Ru/DeHZSM-5催化剂表现出最佳的催化活性,其中,提质油(UBO)中芳香烃的相对含量达到28.95%。此外,结合GC-MS分析结果,提出了愈创木酚、丁香酚和甲基愈创木酚潜在的加氢反应路径。LDB在Ni-Cu-Ru/DeHZSM-5的催化加氢作用下,提质生物油(UBO)的收率可达到80.40%,能量回收率达到96.32%。在催化加氢过程中主要发生了脱甲氧基化反应和脱水反应。相比于LBD,UBO的热值提高了19.80%,达到35.22 MJ/kg,且其含水量、黏度和酸值等性能均有显著改善。具有微介孔结构及Ni、Cu和Ru负载共同修饰的Ni-Cu-Ru/DeHZSM-5催化剂有利于提升芳香烃的收率。
  • Figure  1  XRD patterns of modified and fresh HZSM-5 catalysts

    Figure  2  SEM images and EDS mapping of modified and fresh HZSM-5 catalysts

    (a): HZSM-5; (b): DeHZSM-5; (c): Cu/DeHZSM-5; (d): Ni-Cu/DeHZSM-5; (e): Ni-Cu-Ru/DeHZSM-5

    Figure  3  Products yields from HDO of LDB under different catalytic conditions

    Figure  4  FT-IR spectra of oils obtained under different catalytic conditions

    Figure  5  Compositions of UBO obtained under different catalytic conditions

    Figure  6  Possible reaction pathway for the catalytic HDO of LDB

    Table  1  Textural properties of modified and fresh HZSM-5 catalysts

    CatalystSBET /
    (m2·g−1)
    vmeso /
    (cm3·g−1)
    vmicro /
    (cm3·g−1)
    vtotal /
    (cm3·g−1)
    HZSM-5161.240.150.040.19
    DeHZSM-5168.200.480.020.50
    Cu/DeHZSM-5191.850.430.050.48
    Ni-Cu/DeHZSM-5186.850.310.050.36
    Ni-Cu-Ru/DeHZSM-5183.970.400.040.44
    下载: 导出CSV

    Table  2  Elemental analysis and properties of LDB and UBO

    PropertyLDBBlankUBO
    HZSM-5De/HZSM-5Ni-Cu/DeHZSM-5Ni-Cu-Ru/DeHZSM-5
    C/%67.1269.0173.6271.9974.7476.97
    H/%7.087.297.917.747.868.16
    Oa/%24.0022.0716.7917.3415.1912.72
    N/%1.661.451.542.751.971.95
    S/%0.140.180.140.180.240.20
    H/C1.271.271.291.291.261.27
    O/C0.270.240.170.180.150.12
    HHVb/(MJ·kg−1)29.2930.4033.3332.6133.8835.28
    Water content/%19.8416.3112.1714.557.692.73
    Viscosity/(mm2·s−1@25 °C)38.9535.6326.7128.8420.1716.82
    a Determined by difference, b HHV = 0.3516C + 1.16225H − 0.1109O + 0.0628N + 0.10465S[21]
    下载: 导出CSV
  • [1] SHU R Y, LI R X, LIN B Q, WANG C, CHENG Z D, CHEN Y. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels[J]. Biomass Bioenergy,2020,132:105432. doi: 10.1016/j.biombioe.2019.105432
    [2] AMBURSA M M, JUAN J C, YAHAYA Y, TAUFIQ-YAP Y H, LEE H. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts[J]. Renewable Sustainable Energy Rev,2021,138:110667. doi: 10.1016/j.rser.2020.110667
    [3] RADHIKA N L, SACHDEVA S, KUMAR M. Lignin depolymerization and biotransformation to industrially important chemicals/biofuels[J], Fuel, 2022, 312, 122935.
    [4] LI S M, LUO Z Y, WANG W B, SUN H R, XIE J Q, LIANG X R. Catalytic fast pyrolysis of enzymatic hydrolysis lignin over Lewis-acid catalyst niobium pentoxide and mechanism study[J]. Bioresour Technol,2020,316:123853. doi: 10.1016/j.biortech.2020.123853
    [5] FENG L, LI X H, WANG Z Z, LIU B Z. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst[J]. Bioresour Technol,2021,323:124569. doi: 10.1016/j.biortech.2020.124569
    [6] YANG T H, WU K Y, LI B S, DU C Z, WANG J, LI R D. Conversion of lignin into phenolic-rich oil by two-step liquefaction in sub-supercritical ethanol system assisted by carbon dioxide[J]. J Energy Inst,2021,94:329−336. doi: 10.1016/j.joei.2020.10.001
    [7] LI H W, MA H W, ZHAO W J, LI X H, LONG J X. Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: effect of the catalyst calcination temperature[J]. Appl Energy,2019,253(1):113613.
    [8] LI X P, CHEN G Y, LIU C X, MA W C, YAN B B, ZHANG J G. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review[J]. Renewable Sustainable Energy Rev,2017,71:296−308. doi: 10.1016/j.rser.2016.12.057
    [9] LV W, Hu X H, ZHU Y T, XU Y, LIU S J, CHEN P L, WANG C G, MA L L. Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons[J]. Renewable Energy,2022,188:195−210. doi: 10.1016/j.renene.2021.12.148
    [10] GUO X L, WANG W Y, WU K, HUANG Y P, SHI Q Q, YANG Y Q. Preparation of Fe promoted MoS2 catalysts for the hydrodeoxygenation of p-cresol as a model compound of lignin-derived bio-oil[J]. Biomass Bioenergy,2019,125:34−40. doi: 10.1016/j.biombioe.2019.04.014
    [11] GUO L H, TIAN Y J, HE X Y, QIAO C Z, LIU G Z. Hydrodeoxygenation of phenolics over uniformly dispersed Pt-Ni alloys supported by self-pillared ZSM-5 nanosheets[J]. Fuel,2022,322:124082. doi: 10.1016/j.fuel.2022.124082
    [12] HU L, WEI X Y, KANG Y H, GUO X H, XU M L, ZONG Z M. Mordenite-supported ruthenium catalyst for selective hydrodeoxygenation of lignin model compounds and lignin-derived bio-oil to produce cycloalkanes[J]. J Energy Inst,2021,96:269−279. doi: 10.1016/j.joei.2021.03.017
    [13] ZHAO Y P, WU F P, SONG Q L, FAN X, JIN L J, WANG R Y, CAO J P, WEIX Y. Hydrodeoxygenation of lignin model compounds to alkanes over Pd–Ni/HZSM-5 catalysts[J]. J Energy Inst,2020,93(3):899−910. doi: 10.1016/j.joei.2019.08.002
    [14] LIN F, MA Y L, SUN Y G, ZHAO K H, GAO T T, ZHU Y B. Heterogeneous Ni-Ru/H-ZSM-5 one-pot catalytic conversion of lignin into monophenols[J]. Renewable Energy,2021,170:1070−1080. doi: 10.1016/j.renene.2021.01.150
    [15] BYKOVA M V, ERMAKOV D Y, KAICHEV V V, BULAVCHENKO O A, SARAEV A A, LEBEDEV M Y, YAKOVLEV V A. Ni-based sol-gel catalysts as promising systems for crude bio-oil upgrading: Guaiacol hydrodeoxygenation study[J]. Appl Catal B: Environ,2012,113-114:296−307.
    [16] LI Y, ZHANG C S, LIU Y G, TANG S S, CHEN G H, ZHANG R Q, TANG X Y. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation[J]. Fuel,2017,189:23−31. doi: 10.1016/j.fuel.2016.10.047
    [17] LUO Z C, ZHENG Z X, WANG Y C, SUN G, JIANG H, ZHAO C. Hydrothermally stable Ru/HZSM-5-catalyzed selective hydrogenolysis of lignin-derived substituted phenols to bio-arenes in water[J]. Green Chem,2016,18:5845−5858. doi: 10.1039/C6GC01971D
    [18] ZHANG Z M, LI H. Water-mediated catalytic hydrodeoxygenation of biomass[J]. Fuel,2022,310:122242. doi: 10.1016/j.fuel.2021.122242
    [19] CHEN X B, AN Z Y, WANG Y W, MA Q L, FENG X, LIUY B, YANG C H. Green BTX production from methyl oleate over hierarchical HZSM-5 zeolites prepared by NaOH treatment[J]. Fuel,2021,290:119798. doi: 10.1016/j.fuel.2020.119798
    [20] LUO Y, GUDA V K, HASSAN E B, STEELE P H, MITCHELL B, YU F. Hydrodeoxygenation of oxidized distilled bio-oil for the production of gasoline fuel type[J]. Energy Convers Manag,2016,112:319−327. doi: 10.1016/j.enconman.2015.12.047
    [21] YANG T H, JIE Y F, LI B S, KAI X P, YAN Z, LI R D. Catalytic hydrodeoxygenation of crude bio-oil over an unsupported bimetallic dispersed catalyst in supercritical ethanol[J]. Fuel Process Technol,2016,148:19−27. doi: 10.1016/j.fuproc.2016.01.004
    [22] LI B S, LIU Y X, LI R D, YANG T H, KAI X P. Aluminum-water reactions assisted in situ hydrodeoxygenation of enzymolysis lignin from bioconversion of rice straw over NiMo catalyst[J]. Ind Crop Prod,2020,154:112727. doi: 10.1016/j.indcrop.2020.112727
    [23] ABOULKAS A, HAMMANI H, ACHABY M EL, BILAL E, BARAKAT A, HARFI K EL. Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char[J]. Bioresour Technol,2017,243:400−408. doi: 10.1016/j.biortech.2017.06.098
    [24] LI B S, YANG T H, LI R D, KAI X P. Co-generation of liquid biofuels from lignocellulose by integrated biochemical and hydrothermal liquefaction process[J]. Energy,2020,200:117524. doi: 10.1016/j.energy.2020.117524
    [25] HITA I, CORDERO-LANZAC T, GARCÍA-MATEOS F J, AZKOITI M J, RODRÍGUEZ-MIRASOL J, CORDERO T, BILBAO J. Enhanced production of phenolics and aromatics from raw bio-oil using HZSM-5 zeolite additives for PtPd/C and NiW/C catalysts[J]. Appl Catal B: Environ,2019,259:118112. doi: 10.1016/j.apcatb.2019.118112
    [26] BARTON R R, CARRIER M, SEGURA C, FIERRO J L G, PARK S, LAMB H H, ESCALONA N, PERETTI S W. Ni-HZSM-5 catalyst preparation by deposition-precipitation. Part 2. Catalytic hydrodeoxygenation reactions of lignin model compounds in organic and aqueous systems[J]. Appl Catal A: Gen,2018,562:294−309. doi: 10.1016/j.apcata.2018.06.012
    [27] XUE Y, SHARMA A, HUO J, QU W, BAI X. Low-pressure two-stage catalytic hydropyrolysis of lignin and lignin-derived phenolic monomers using zeolite-based bifunctional catalysts[J]. J Anal Appl Pyrolysis,2020,146:104779. doi: 10.1016/j.jaap.2020.104779
    [28] BJELIĆ A, GRILC M, LIKOZAR B. Bifunctional metallic-acidic mechanisms of hydrodeoxygenation of eugenol as lignin model compound over supported Cu, Ni, Pd, Pt, Rh and Ru catalyst materials[J]. Chem Engineer,2020,394:124914. doi: 10.1016/j.cej.2020.124914
    [29] VENKATESAN K, JAYARAMA KRISHNA J V, ANJANA S, SELVAM P, VINU R. Hydrodeoxygenation kinetics of syringol, guaiacol and phenol over HZSM-5[J]. Catal Commun,2021,148:106164. doi: 10.1016/j.catcom.2020.106164
    [30] LI W L, WANG H Y, WU X Z, BETANCOURT L E, TU C Y, LIAO M J, CUI X Y, LI F, ZHENG J J, LI R F. Ni/hierarchical ZSM-5 zeolites as promising systems for phenolic bio-oil upgrading: guaiacol hydrodeoxygenation[J]. Fuel,2020,274:117859. doi: 10.1016/j.fuel.2020.117859
    [31] CAI Q J, YU T L, MENG X, ZHANG S P. Selective generation of aromatic hydrocarbons from hydrotreating-cracking of bio-oil light fraction with MOx modified HZSM-5 (M = Ga, Mo and Zn)[J]. Fuel Process Technol,2020,204:106424. doi: 10.1016/j.fuproc.2020.106424
    [32] LASKAR D D, YANG B, WANG H M, LEE J. Pathways for biomass-derived lignin to hydrocarbon fuels[J]. Biofuel Bioprod Bior,2013,7:602−626. doi: 10.1002/bbb.1422
    [33] ZHAO M X, HU J, WU S L, YANG L, AN X, YUAN P, LU P. Hydrodeoxygenation of lignin-derived phenolics over facile prepared bimetallic RuCoNx/NC[J]. Fuel,2022,308:121979. doi: 10.1016/j.fuel.2021.121979
  • 2022-B010_Supplementary+Information_燃料化学学报.docx
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  11
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-06-22
  • 修回日期:  2022-05-01
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回