留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst

ZHANG Pei-pei ATCHIMARUNGSRI Thachapan

张培培, AtchimarungsriThachapan. Cu改性的FeMg@SiO2纳米级核壳催化剂实现合成气一步法制备液化石油气[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60064-1
引用本文: 张培培, AtchimarungsriThachapan. Cu改性的FeMg@SiO2纳米级核壳催化剂实现合成气一步法制备液化石油气[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60064-1
ZHANG Pei-pei, ATCHIMARUNGSRI Thachapan. Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60064-1
Citation: ZHANG Pei-pei, ATCHIMARUNGSRI Thachapan. Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60064-1

Cu改性的FeMg@SiO2纳米级核壳催化剂实现合成气一步法制备液化石油气

doi: 10.1016/S1872-5813(22)60064-1
详细信息
  • 中图分类号: O643

Direct synthesis of LPG from syngas over Cu modified FeMg@SiO2 nano-level core@shell catalyst

More Information
    Corresponding author: Tel: 0951-2062323, E-mail: thachapan@126.com
  • 摘要: 本文系统研究了纳米级核壳催化剂由合成气经费托合成路线一步法直接制备液化石油气。通过采用共沉淀法、改性溶胶-凝胶法和浸渍法相结合的方法将Cu纳米颗粒浸渍在介孔二氧化硅壳包覆的FeMg催化剂,所制备的Cu/FeMg@SiO2纳米核壳催化剂的物理化学性质通过一系列的表征技术进行分析,如XRD、TEM、N2吸附-脱附、H2-TPR、XPS 和 CO2-TPD等。Cu/FeMg@SiO2纳米核壳催化剂在液化石油气合成反应中表现出较高的CO转化率(96.6%)和较低CO2选择性(21.9%),其中,液化石油气的选择性到达37.9%。反应结果表明SiO2 壳层抑制了CH4的形成,有助于增加长链产物。同时,高的CO转化率归因于Cu/FeMg@SiO2上活性金属Cu元素在SiO2壳上的高分散,进一步促进了烯烃加氢和C5 + 烃类产物的裂解。本文中所提出的催化剂制备方法将为金属和沸石基纳米级催化剂的合成提供新的策略。
  • 1  Synthetic procedures of Cu/FeMg@SiO2 core@shell catalyst and its performance for LPG synthesis from syngas via FTS

    Figure  1  XRD patterns of different samples

    (♦Fe2O3; ■ MgFe2O4; ●MgO)

    Figure  2  XPS spectra of Cu/FeMg@SiO2 core catalyst, (a): high-resolution C 1s; (b): high-resolution Cu 2p; (c): high-resolution Fe 2p; (d): high-resolution Mg 1s

    Figure  3  (a): N2 adsorption-desorption isotherms; and (b): BJH pore diameter distribution for different samples

    Co/FeMg@SiO2 should be replaced by Cu/FeMg@SiO2

    Figure  4  TEM images of different catalyst

    (a): FeMg; (b): FeMg@SiO2

    Figure  5  H2-TPR profiles of FeMg, FeMg@SiO2 and Cu/FeMg@SiO2 catalysts

    Figure  6  CO2-TPD profiles of FeMg, FeMg@SiO2 and Cu/FeMg@SiO2 catalysts

    Figure  7  Hydrocarbon product distribution obtained over Cu/FeMg@SiO2 catalyst via FTS route Olefin should be replaced by olefins

    Figure  8  Weight loss of all spend catalysts in the LPG synthesis from syngas via FTs

    Table  1  Texture properties of samples

    SampleSBET /(m2·g−1)aV /(cm3·g−1)
    FeMg900.36
    SiO21310.21
    FeMg@SiO2920.33
    Cu/FeMg@SiO2880.30
    a: Determined by Brunauer-Emmett-Teller (BET) method
    下载: 导出CSV

    Table  2  Catalytic performance of samplesa

    CatalystCO conv. /%CO2 sel. /%Hydrocarbons selectivity /%
    CH4C2−4P3−4bO2−4cC5 + olefinsd
    FeMg97.935.022.659.228.011.718.216.8
    FeMg@SiO297.031.319.554.522.316.026.024.2
    Cu/FeMg@SiO296.621.922.360.237.93.717.56.3
    a Reaction condition: temperature–300 °C, pressure–1 MPa, W/F=10 g·(h·mol−1), TOS=6 h, H2/CO/Ar= 12.6∶6.3∶1.0, b P stands for paraffins, c O means olefins, d olefins includes the selectivity of O2−4
    下载: 导出CSV
  • [1] GE Q, LI X, KANEKO H, FUJIFOMO K. Direct synthesis of LPG from synthesis gas over Pd-Zn-Cr/Pd-hybrid catalysts[J]. J Mol Catal A-Chem,2007,278(1-2):215−219. doi: 10.1016/j.molcata.2007.09.008
    [2] ZHAO T, TAKEMOTO T, TSUBAKI N. Direct synthesis of propylene and light olefins from dimethyl ether catalyzed by modified H-ZSM-5[J]. Catal Commun,2006,7(9):647−650. doi: 10.1016/j.catcom.2005.11.009
    [3] GE Q, YU L, YUAN X, LI X, FUJIMOTO F. High performance Cu-ZnO/Pd-β catalysts for syngas to LPG[J]. Catal Commun,2008,9(2):256−261. doi: 10.1016/j.catcom.2007.06.011
    [4] MA X, GE Q, FANG C, MA J, XU H. Direct synthesis of LPG from syngas derived from air-POM[J]. Fuel,2011,90(5):2051−2054. doi: 10.1016/j.fuel.2011.01.003
    [5] LI C, YU X, FUJIMOTO K. Direct synthesis of LPG from carbon dioxide over hybrid catalysts comprising modified methanol synthesis catalyst and β-type zeolite[J]. Appl Catal A-Gen,2014,475:155−160. doi: 10.1016/j.apcata.2014.01.025
    [6] ZHANG P P, YANG G H, TAN L, Ai P P, YANG R Q, TSUBAKI N. Direct synthesis of liquefied petroleum gas from syngas over H-ZSM-5 enwrapped Pd-based zeolite capsule catalyst[J], Catal Today, 2018, 303, 77–85.
    [7] LI H J, ZHANG P P, GUO L S, HE Y L, ZENG Y, THONGKAM M, NATAKARANAKUL J, KOJIMA T, REUBROYCHAROEN P, VITIDSANT T, YANG G H, TSUBAKI N. A well-defined core-shell-structured capsule catalyst for direct conversion of CO2 into liquefiedl petroleum gas[J]. Chemsuschem,2020,13:2060−2065. doi: 10.1002/cssc.201903576
    [8] LU P, SUN J, SHEN D M, YANG R, XING C, LU C X, TSUBAKI N, SHAN S D. Direct syngas conversion to liquefied petroleum gas: Importance of a multifunctional metal-zeolite interface[J]. Appl Energy,2018,209:1−7. doi: 10.1016/j.apenergy.2017.10.068
    [9] PEDERSEN E, SVENUM I, BLEKKAN E. Mn promoted Co catalysts for Fischer-Tropsch production of light olefins -An experimental and theoretical study[J]. J Catal,2018,361:23−32. doi: 10.1016/j.jcat.2018.02.011
    [10] XING C, SUN J, YANG G H, SHEN W, TAN L, ZHU P, WEI Q, LI J, KYODO M, YANG R, YONEYAMA Y, TSUBAKI N. Tunable isoparaffin and olefin synthesis in Fischer-Tropsch synthesis achieved by composite catalyst[J]. Fuel Process Technol,2015,136:68−72. doi: 10.1016/j.fuproc.2014.10.001
    [11] XING C, SUN J, CHEN Q, YANG G, MURANAKA N, LU P, SHEN W, ZHU P, WEI Q, LI J, MAO J, YANG R, TSUNAKI N. Tunable isoparaffin and olefin yields in Fischer–Tropsch synthesis achieved by a novel iron-based micro-capsule catalyst[J]. Catal Today,2015,251:41−46. doi: 10.1016/j.cattod.2014.10.022
    [12] HERRANZ H, ROJAS S, OJEDA M, PEREZ-ALONSO F, TERREROS P, PIROTA K, FIERRO J. Synthesis, structural features, and reactivity of Fe-Mn mixed oxides prepared by microemulsion[J]. Chem Mater,2006,18(9):2364−2375. doi: 10.1021/cm052568i
    [13] HERRANZ H, ROJAS S, PEREZ-ALONSO F, OJEDA M, TERREROS P, FIERRO J. Hydrogenation of carbon oxides over promoted Fe-Mn catalysts prepared by the microemulsion methodology[J]. Appl Catal A-Gener,2006,311:66−75. doi: 10.1016/j.apcata.2006.06.007
    [14] WEI J, GE Q J, YAO R W, WEN Z Y, FANG C Y, GUO L S, XU H Y, SUN J. Directly converting CO2 into a gasoline fuel[J]. Nat Commun,2017,8:15174. doi: 10.1038/ncomms15174
    [15] YANG Z, LUO M S, LIU Q L, SHI B C. In situ XRD and Raman investigation of the activation process over K-Cu-Fe/SiO2 catalyst for fischer–tropsch synthesis reaction[J]. Catal Lett,2020,150:2437−2445. doi: 10.1007/s10562-020-03147-6
    [16] GAO X H, ZHANG J L, CHEN N, MAQ X, FAN S B, ZHAO T S, TSUBAKI N. Effects of zinc on Fe-based catalysts during the synthesis of light olefins from the Fischer-Tropsch process[J]. Chin J Catal,2016,37(4):510−516. doi: 10.1016/S1872-2067(15)61051-8
    [17] SUN S, ZENG H, ROBINSON B, RAOUX S, RICE M, WANG S, LI G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles[J]. J Am Chem Soc,2004,126(1):273−279. doi: 10.1021/ja0380852
    [18] CROCELLA V, CERRATO G, MAGNACCA G, MORTERRA C, CAVANA F, COCCHI S, PASSERI S, SCAGLIARINI D, FLEGO C, PEREGO C. The balance of acid, basic and redox sites in Mg/Me-mixed oxides: The effect on catalytic performance in the gas-phase alkylation of m-cresol with methanol[J]. J Catal,2010,270(1):125−135. doi: 10.1016/j.jcat.2009.12.011
    [19] LEE Y, LEE J, BEA C J, PARK J G, NOH H J, PARK J H, HYEON T. Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions[J]. Adv Funct Mater,2005,15(3):503−509. doi: 10.1002/adfm.200400187
    [20] ÖZKARA-AYDINOGLU S, ATAC Ö, GUL Ö F, KINAYYIGIT S, SAL S, BARANAK M, BOZ I, α-Olefin selectivity of Fe-Cu-K catalysts in Fischer-Tropsch synthesis: Effects of catalyst composition and process conditions[J]. Chem Eng J, 2012, 181-182, 581–589.
    [21] BAO J, HE J, ZHANG Y, YONEYAMA Y, TSUBAKI N. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction[J]. Angew Chem,2008,120:359−362. doi: 10.1002/ange.200703335
    [22] LI W, HE Y, LI H, SHEN D, XING C, YANG R. Spatial confinement effects of zeolite-based micro-capsule catalyst on tuned Fischer-Tropsch synthesis product distribution[J]. Catal Commun,2017,98:98−101. doi: 10.1016/j.catcom.2017.05.008
    [23] YANG G H, TSUBAKI N, SHAMOTO J, YONEYAMA Y, ZHANG Y. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis[J]. J Am Chem Soc,2010,132:8129−8136. doi: 10.1021/ja101882a
    [24] MOREL A, NIKITENKO S, GIONNET K, WATTIAUX A, LAI-KEE-HIM J, LABRUGERE C. Sonochemical approach to the synthesis of Fe3O4@SiO2 core-shell nanoparticles with tunable properties[J]. ACS Nano,2008,2(5):847−856. doi: 10.1021/nn800091q
    [25] PARK J, LEE H, JUNG H, KIM M, KIM H, PARK K, SONG H. Gram-scale synthesis of magnetically separable and recyclable Co@SiO2 yolk-shell nanocatalysts for phenoxycarbonylation reactions[J]. ChemCatChem,2011,3(4):755−760. doi: 10.1002/cctc.201000318
    [26] XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis[J]. Catal Commun,2011,12(7):589−592. doi: 10.1016/j.catcom.2010.12.013
    [27] XU Y F, LI X Y, GAO J H, WANG J, MA G Y, WEN X D, LI Y W, DING M Y. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products[J]. Science,2021,371(6529):610−613. doi: 10.1126/science.abb3649
    [28] ZHANG Y, QING M, WANG H, LIU X W, LIU S Y, WAN H L, LI L G, GAO X, YANG Y, WEN X D, LI Y W. Comprehensive understanding of SiO2-promoted Fe Fischer-Tropsch synthesis catalysis: Fe-SiO2 interaction and beyond[J]. Catal Today,2021,368:96−105. doi: 10.1016/j.cattod.2020.02.026
    [29] ZHANG Y L, WANG T J, MA L L, SHI N, ZHOU D F, LI X J. Promotional effects of Mn on SiO2-encapsulated iron-based spindles for catalytic production of liquid hydrocarbons[J]. J Catal,2017,350:41−47. doi: 10.1016/j.jcat.2017.02.019
    [30] JANSSENS W, MAKSHINA E, VANELDEREN P, CLIPPEL F, HOUTHOOFD K, KERKHOFS S, MARTENS J, JACOBS P, SEL B. Ternary Ag/MgO-SiO2 catalysts for the conversion of ethanol into butadiene[J]. ChemSusChem,2015,8(6):994−1008. doi: 10.1002/cssc.201402894
    [31] PRADEEP A, PRIYADHARSINI P, CHANDRASEKARAN G, Sol-gel route of synthesis of nanoparticles of MgFe2O4 and XRD, FTIR and VSM study[J]. J Magn Magn Mater, 2008, 320(21), 2774–2779.
    [32] DJAIDJA A, MESSAOUDI H, KADDECHE D, BARAMA A. Study of Ni-M/MgO and Ni-M-Mg/Al (M=Fe or Cu) catalysts in the CH4−CO2 and CH4−H2O reforming[J]. Int J Hydrogen Energ,2015,40(14):4989−4995. doi: 10.1016/j.ijhydene.2014.12.106
    [33] XIE R, LI D, HOU B, WANG J, JIA L, SUN Y. Solvothermally derived Co3O4@m-SiO2 nanocomposites for Fischer-Tropsch synthesis[J]. Catal Commun,2011,12(5):380−383. doi: 10.1016/j.catcom.2010.10.010
    [34] LIN Q H, ZHANG Q D, YANG G H, CHEN Q J, LI J, WEI Q H, TAN Y S, WAN H L, TSUBAKI N. Insights into the promotional roles of palladium in structure and performance of cobalt-based zeolite capsule catalyst for direct synthesis of C5−C11 iso-paraffins from syngas[J]. J Catal,2016,344:378−388. doi: 10.1016/j.jcat.2016.10.012
    [35] TAN L, ERDENEBAATAR O, LIU G G, YAMANE N, AI P P, OTANI A, YONEYAMA Y, YANG G H, TSUBAKI N. Catalytic cracking of 4-(1-naphthylmethyl)bibenzyl in sub- and supercritical water[J]. Appl Catal A-Gen,2015,505:41−149.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  18
  • HTML全文浏览量:  6
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-08
  • 录用日期:  2022-09-14
  • 修回日期:  2022-07-26
  • 网络出版日期:  2022-10-17

目录

    /

    返回文章
    返回