留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热催化CO2加氢制乙醇的研究进展

毛瑀中 查飞 田海锋 唐小华 常玥 郭效军

毛瑀中, 查飞, 田海锋, 唐小华, 常玥, 郭效军. 热催化CO2加氢制乙醇的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60065-3
引用本文: 毛瑀中, 查飞, 田海锋, 唐小华, 常玥, 郭效军. 热催化CO2加氢制乙醇的研究进展[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60065-3
MAO Yu-zhong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue, GUO Xiao-jun. Progress in thermal catalysis hydrogenation of CO2 to ethanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60065-3
Citation: MAO Yu-zhong, ZHA Fei, TIAN Hai-feng, TANG Xiao-hua, CHANG Yue, GUO Xiao-jun. Progress in thermal catalysis hydrogenation of CO2 to ethanol[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60065-3

热催化CO2加氢制乙醇的研究进展

doi: 10.1016/S1872-5813(22)60065-3
基金项目: 国家自然科学基金 (22268039, 21865031)资助
详细信息
    作者简介:

    毛瑀中(1994-),男,硕士研究生,研究方向:能源与环境化工. E-mail:343003568@qq.com

    通讯作者:

    E-mail:zhafei@nwnu.edu.cn

  • 中图分类号: TQ426.94;O643.32

Progress in thermal catalysis hydrogenation of CO2 to ethanol

Funds: National Natural Science Foundation of China (22268039, 21865031)
  • 摘要: CO2的化学转化作为碳减排的有效手段受到了广泛关注,近年来,通过热催化工艺将CO2加氢转化为乙醇已经取得了突破性的进展,但仍然存在乙醇选择性及产率低、副产物较多等问题。本文对热催化CO2加氢制取乙醇的研究进展进行了综述,主要论述了以分子筛、金属氧化物、钙钛矿、二氧化硅、有机框架、金属碳化物等为载体的催化剂的应用,分析了不同金属间的协同作用对CO2转化过程的影响以及各类活性物种的介入对于反应的促进作用,总结了能够有效促进C–C键偶联以及CO2吸附和活化的催化剂体系。在此基础上分析了影响CO2加氢制取乙醇的因素,并对反应机理进行了讨论。综述为CO2加氢制备乙醇的催化剂设计、合成工艺条件优化以及催化机理的探究提供参考。
  • 图  1  CO2加氢合成乙醇原理图 [9]

    Figure  1  Diagram of CO2 hydrogenation to ethanol [9]

    图  2  合成气通过RhMn@S-1催化合成乙醇 [14]

    Figure  2  Synthesis of ethanol from syngas catalyzed by RhMn@S-1 [14]

    图  3  Au/a-TiO2上CO2和H2合成乙醇的可能反应途径 [22]

    Figure  3  Possible reaction pathway for the synthesis of ethanol from CO2 and H2 on Au/a-TiO2 [22]

    图  4  Pd2/CeO2 (110)上催化CO2加氢合成乙醇的过程和活化势垒(红球: O; 蓝球: Pd)[23]

    Figure  4  Process and activation potential for catalytic CO2 hydrogenation to ethanol on Pd2/CeO2 (110) [23] (red sphere: O; blue sphere: Pd)

    图  5  (a) In2O3和(b) Ir1-In2O3的表面静电势图;(c) CO2在In2O3和Ir1-In2O3上的分解自由能图 [24]

    Figure  5  Surface electrostatic potential diagram of (a) In2O3 and (b) Ir1-In2O3 surface; (c) free energy diagram of CO2 decomposition on In2O3 and Ir1-In2O3 [24]

    图  6  CZA/K-CMZF多功能催化剂上CO2加氢制乙醇的反应途径及邻近效应[28]

    Figure  6  Reaction pathway and proximity effect of CO2 hydrogenation to ethanol over CZA/K-CMZF multifunctional catalyst [28]

    图  7  Co/La4Ga2O9催化CO2加氢合成乙醇反应机理 [32]

    Figure  7  Mechanism of Co/La4Ga2O9 catalyzed CO2 hydrogenation to ethanol [32]

    图  8  CoGa1.0Al1.0O4/SiO2催化剂上CO2加氢合成乙醇 [38]

    Figure  8  CO2 hydrogenation to ethanol over CoGa1.0Al1.0O4/SiO2 catalyst [38]

    图  9  Cu/SiO2上CO加氢合成甲醇和乙醇的示意图 [39]

    Figure  9  Schematic diagram of methanol and ethanol synthesis by CO hydrogenation on Cu/SiO2 [39]

    图  10  MOF催化CO2加氢合成乙醇机理 [43]

    Figure  10  Mechanism of CO2 hydrogenation to ethanol on MOF [43]

    图  11  CO2加氢实验装置示意图 [57]

    (A) 固定床反应器,(B) 浆态床反应器,(C) 流化床反应器(1) 原料气瓶,(2) 质量流量控制器,(3) 电加热器,(4) G/L分离器,(5) 冷凝器,(6) 背压调节阀,(7) 湿气量表

    Figure  11  Schematic diagram of CO2 hydrogenation experimental setup [57]

    (A) fixed bed reactor, (B) slurry bed reactor and (C) fluidized bed reactor (1) raw gas cylinders, (2) mass flow controller, (3) electric heater, (4) G/L separator, (5) condenser, (6) back pressure control valve, (7) moisture scale

    图  12  CO2加氢合成乙醇示意图 [58]

    Figure  12  Schematic diagram of CO2 hydrogenation tor ethanol [58]

    图  13  二氧化碳加氢制乙醇的CO插入机理 [33]

    Figure  13  CO insertion mechanism of CO2 hydrogenation to ethanol [33]

    图  14  DFT计算的CO加氢生成甲醇、甲烷和乙醇的反应网络 [63]

    Figure  14  DFT calculated reaction network for CO hydrogenation to methanol methane and ethanol [63]

    图  15  Fischer-Tropsch反应速率变化示意图 [64]

    Figure  15  Schematic diagram of the Fischer-Tropsch reaction rate change [64]

    图  16  CO2加氢制备醇和碳氢化合物的反应途径[66]

    Figure  16  Reaction pathways for the preparation of alcohols and hydrocarbons by CO2 hydrogenation [66]

    图  17  甲醇羰基化制乙醇反应途径[68]

    Figure  17  Reaction pathway of methanol carbonylation to ethanol [68]

    图  18  CO2加氢合成乙醇的机理 [61]

    Figure  18  Mechanism of CO2 hydrogenation to ethanol [61]

    图  19  DFT计算的C–C偶联反应在(a) Cu/ZnO表面和(b) Cu/Cs/ZnO表面上的势能图[72]

    棕色:铜;红色:O;绿色:Cs;灰色:C;白色:H;没有直接参与反应的氧化锌以线型表示

    Figure  19  DFT-calculated potential energy diagram for the C−C coupling reaction on (a) Cu/ZnO and (b) Cu/Cs/ZnO surface [72]

    Cu, brown; O, red; Cs, green; C, gray; H, white; ZnO that did not participate in the reaction directly was represented in line mode

    表  1  CO2加氢制乙醇工艺条件

    Table  1  The summary of synthesis conditions on CO2 hydrogenation to ethanol

    CatalystReaction conditionReactor typeEthanol sel./%CO2
    conv./%
    Ref.
    p/MPat/℃H2/CO2
    Cu@Na-Beta2.13003∶1fixed bed reactor100.07.9[9]
    RhMn@S-13.03203∶1fixed bed reactor88.3[14]
    RhFeLi/TiO23.02503∶1fixed bed reactor≥30.015.0[18]
    Pd2Cu NPs/P253.22003∶1slurry bed reactor92.0[20]
    LaCo1−xGaxO33.02403∶1fixed bed reactor88.19.8[21]
    Au/TiO26.02003∶1slurry bed reactor98.0[22]
    Ir/In2O36.02005∶1slurry bed reactor99.7[24]
    CZA/K-CMZF5.03203∶1fixed bed reactor≥90.042.3[25]
    Co/La4Ga2O93.02703∶1fixed bed reactor34.74.6[32]
    Rh-Li/SiO25.02403∶1fixed bed reactor15.57.0[33]
    Rh-Fe/SiO25.02603∶1fixed bed reactor16.423.7[34]
    CoGa1.0Al1.0O4/SiO23.02703∶1fixed bed reactor≥80.05.0[38]
    MIL-125-NH2-Cu1-45.01003∶1slurry bed reactor≥90.03.9[43]
    CoMoCx4.01803∶1slurry bed reactor98.4[49]
    K0.2Rh0.2/β-Mo2C6.01503∶1slurry bed reactor72.1[50]
    Pd/Fe3O43.03004∶1fixed bed reactor97.40.3[53]
    CoAlOx4.01403∶1slurry bed reactor92.1[54]
    Co/Mo2C4.02003∶1slurry bed reactor86.025.0[65]
    下载: 导出CSV

    表  2  模型拟合确定的速率常数 [64]

    Table  2  Rate constants determined by model fitting [64]

    pCO/(mbar)/s −1
    kadskdeskdissktmktkfkbkw
    903.70.0331.300.600.224.1 × 1032.1 × 1030.163
    1373.60.0341.310.520.184.5 × 1032.1 × 1030.135
    1803.40.0361.320.430.164.7 × 1032.2 × 1030.143
    3002.90.0381.390.280.134.7 × 1032.4 × 1030.144
    1202.80.0391.380.190.104.8 × 1032.5 × 1030.148
    9002.60.0421.400.0790.085.1 × 1032.6 × 1030.149
    : (s −1 bar −1)
    下载: 导出CSV
  • [1] ZHANG S, WU Z X, LIU X F, HUA K M, SHAO Z L, WEI B Y, HUANG C J, WANG H, SUN Y H. A Short review of recent advances in direct CO2 hydrogenation to alcohols[J]. Top Catal, 2021, 64(5–6): 371–394.
    [2] LU F X, CHEN X, WANG W, ZHANG Y. Adjusting the CO2 hydrogenation pathway via the synergic effects of iron carbides and iron oxides[J]. Catal Sci Technol,2021,11(23):7694−7703. doi: 10.1039/D1CY01758F
    [3] PATRIZIO P, FAJARDY M, BUI M, DOWELL N M. CO2 mitigation or removal: The optimal uses of biomass in energy system decarbonization[J]. iScience,2021,24(7):102765. doi: 10.1016/j.isci.2021.102765
    [4] BEDIAKO B A, QIAN Q L, HAN B X. Synthesis of C2 + chemicals from CO2 and H2 via C–C bond formation[J]. Accounts Chem Res,2021,54(10):2467−2476. doi: 10.1021/acs.accounts.1c00091
    [5] 王桂硕CO2加氢制乙醇催化剂的结构构建及反应机理研究[D]. 天津: 天津大学, 2019.

    WANG Gui-shuo. Study on structural construction and reaction mechanism of catalyst for CO2 hydrogenation to ethanol [D]. Tianjin: Tianjin University, 2019.
    [6] INUI T, YAMAMOTO T, INOUE M, HARA H, TAKEGUCHI T, KIM J B. Highly effective synthesis of ethanol by CO2-hydrogenation on well balanced multi-functional FT-type composite catalysts[J]. Appl Catal A-Gen, 1998, 186 (1–2): 395–406.
    [7] STRANGES A. History of the Fischer-Tropsch synthesis in Germany 1926–45[J]. Stud Surf Sci Catal,2007,163(7):1−27.
    [8] STEINBERG M. History of CO2 greenhouse gas mitigation technologies[J]. Energ Convers Manage, 1992, 33 (5–8): 311–315.
    [9] DING L P, SHI T T, GU J, CUI Y, ZHANG Z Y, YANG C J, CHEN T, LIN M, WANG P, XUE N H, PENG L M, GUO X F, ZHU Y, CHEN Z X, DING W P. CO2 hydrogenation to ethanol over Cu@Na-Beta[J]. Chem,2020,6(10):2673−2689. doi: 10.1016/j.chempr.2020.07.001
    [10] ZHANG J W, SEWELL C, HUANG H W, LIN Z Q. Closing the anthropogenic chemical carbon cycle toward a sustainable future via CO2 valorization[J]. Adv Energy Mater,2021,11(47):2102767. doi: 10.1002/aenm.202102767
    [11] DONALDSON L. 2D molecular sieve with range of uses[J]. Mater Today,2022,55:2−3. doi: 10.1016/j.mattod.2022.05.005
    [12] PUJADó P R, RABó J A, ANTOS G J, GEMBICKI S A. Industrial catalytic applications of molecular sieves[J]. Catal Today,1992,13(1):113−141. doi: 10.1016/0920-5861(92)80191-O
    [13] CHEN Y, ZHU X X, WANG X P, SU Y P. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite[J]. Chem Eng J,2021,419:129641. doi: 10.1016/j.cej.2021.129641
    [14] WANG C T, ZHANG J, QIN G Q, WANG L, ZUIDEMA E, YANG Q, DANG S H, YANG C G, XIAO J P, MENG X J, MESTERS C, XIAO F S. Direct conversion of syngas to ethanol within zeolite crystals[J]. Chem,2020,6(3):646−657. doi: 10.1016/j.chempr.2019.12.007
    [15] REGALADOVERA C, MANAVI N, ZHOU Z. Mechanistic understanding of support effect on the activity and selectivity of indium oxide catalysts for CO2 hydrogenation[J]. Chem Eng J,2021,426:131767. doi: 10.1016/j.cej.2021.131767
    [16] ZHANG M H, YAO R, JIANG H X, Li G M, Chen Y F. Insights into the mechanism of acetic acid hydrogenation to ethanol on Cu (111) surface[J]. Appl Surf Sci,2017,412:342−349. doi: 10.1016/j.apsusc.2017.03.222
    [17] HU S L, LI W. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts[J]. Science,2021,374(6573):1360−1365. doi: 10.1126/science.abi9828
    [18] YANG C S, MU R T, WANG G S, SONG J M, TIAN H, ZHAO Z J, GONG J L. Hydroxyl-mediated ethanol selectivity of CO2 hydrogenation[J]. Chem Sci,2019,10:3161−3167. doi: 10.1039/C8SC05608K
    [19] 佟小萌, 韩松洺. 负载型金属纳米催化剂对催化反应性能影响的研究进展[J]. 云南化工,2021,48(5):12−13. doi: 10.3969/j.issn.1004-275X.2021.05.05

    TONG Xiao-meng, HAN Song-ming. Research Progress on the Effect of Supported Metal Nano-catalysts on Catalytic Reaction Performance[J]. Yunnan ChemTechnol,2021,48(5):12−13. doi: 10.3969/j.issn.1004-275X.2021.05.05
    [20] BAI S X, SHAO Q, WANG P T, DAI Q G, WANG X Y, HUANG X Q. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd-Cu nanoparticles[J]. J Am Chem Soc,2017,139(20):6827−6830. doi: 10.1021/jacs.7b03101
    [21] ZHENG J N, AN K, WANG J M, LI J, LIU Y. Direct synthesis of ethanol via CO2 hydrogenation over the Co/La-Ga-O compos-ite oxide catalyst[J]. J Fuel Chem Technol,2019,47(6):697−708. doi: 10.1016/S1872-5813(19)30031-3
    [22] WANG D, BI Q Y, YIN G H, ZHAO W L, HUANG F Q, XIE X M, JIANG M H. Direct synthesis of ethanol via CO2 hydrogenation using supported gold catalysts[J]. Chem Commun,2016,52(99):14226−14229. doi: 10.1039/C6CC08161D
    [23] LOU Y, JIANG F, ZHU W, WANG L, YAO T Y, WANG S S, YANG B, YANG B, ZHU Y F, LIU X H. CeO2 supported Pd dimers boosting CO2 hydrogenation to ethanol[J]. Appl Catal B-Environ,2021,291:120122. doi: 10.1016/j.apcatb.2021.120122
    [24] YE X, YANG C Y, PAN X L, MA J G, ZHANG Y R, REN Y J, LIU X Y, LI L, HUANG Y Q. Highly selective hydrogenation of CO2 to ethanol via designed bifunctional Ir1-In2O3 single-atom catalyst[J]. J Am Chem Soc,2020,142(45):19001−19005. doi: 10.1021/jacs.0c08607
    [25] WEI J, YAO R W, HAN Y, GE Q J, SUN J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons[J]. Chem Soc Rev,2021,50(19):10764−10805. doi: 10.1039/D1CS00260K
    [26] XU M J, LIU X L, SONG G Y, CAI Y Y, SHI B F, LIU Y T, DING X X, YANG Z X, TIAN P F, CAO C X, XU J. Regulating iron species compositions by Fe-Al interaction in CO2 hydrogenation[J]. J Catal,2022,413:331−341. doi: 10.1016/j.jcat.2022.06.030
    [27] DU H, ZHU H J, LIU T, ZHAO Z A, CHEN X K, DONG W D, LU W, LUO W T, DING Y J. Higher alcohols synthesis via CO hydrogenation on Fe-promoted Co/AC catalysts[J]. Catal Today,2017,281:549−558. doi: 10.1016/j.cattod.2016.05.023
    [28] XU D, YANG H Q, HONG X L, LIU G L, TSANG S C E. Tandem catalysis of direct CO2 hydrogenation to higher alcohols[J]. ACS Catal,2021,11(15):8978−8984. doi: 10.1021/acscatal.1c01610
    [29] WANG Y Q, ZHANG X X, HONG X L, LIU G L. Sulfate-promoted higher alcohol synthesis from CO2 hydrogenation[J]. ACS Sustain Chem Eng,2022,10(27):8980−8987. doi: 10.1021/acssuschemeng.2c02743
    [30] WANG K, HAN C, SHAO Z P, QIU J H, WANG S B, LIU S M. Perovskite oxide catalysts for advanced oxidation reactions[J]. Adv Funct Mater,2021,31:2102089. doi: 10.1002/adfm.202102089
    [31] HOU Y H, WANG X Y, CHEN M, Gao X Y, Liu Y Z, Guo Q J. Sr1-xKxFeO3 perovskite catalysts with enhanced RWGS reactivity for CO2 hydrogenation to light olefins[J]. Atmosphere,2022,13(5):760. doi: 10.3390/atmos13050760
    [32] AN K, ZHANG S R, WANG J M, LIU Q, ZHANG Z Y, LIU Y. A highly selective catalyst of Co/La4Ga2O9 for CO2 hydrogenation to ethanol[J]. J Energy Chem,2021,56:486−495. doi: 10.1016/j.jechem.2020.08.045
    [33] KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. CO2 hydrogenation to ethanol over promoted Rh/SiO2 catalysts[J]. Catal Today,1996,28:261−266. doi: 10.1016/0920-5861(95)00246-4
    [34] KUSAMA H, OKABE K, SAYAMA K, ARAKAWA H. Ethanol synthesis by catalytic hydrogenation of CO2 over Rh-Fe/SiO2 catalysts[J]. Energy,1997,22:343−348. doi: 10.1016/S0360-5442(96)00095-3
    [35] 刘启予, 范炜. 介孔分子筛制备技术新进展——二次合成、超分子自组装和介孔生成剂法(英文)[J]. 高等学校化学学报,2021,42(1):60−73.

    LIU Qi-yu, FAN Wei. Recent advances in the synthesis of mesoporous zeolites by post-synthetic method, supramolecular self-assembly and mesopore generation agent[J]. Chem J Chinese U,2021,42(1):60−73.
    [36] SHAWABKEH R, FAQIR N, RAWAJFEH K, HUSSIEN I A, HAMZA A. Adsorption of CO2 on Cu/SiO2 nano-catalyst: Experimental and theoretical study[J]. Appl Surf Sci,2022,586:152726. doi: 10.1016/j.apsusc.2022.152726
    [37] GORYACHEV A, PUSTOVARENKO A, SHETRK G, ALHAJRI N S, JAMAL A, ALBUALI M, KOPPEN L, KHAN S, RUSSKIKB A, RAMIREZ A, SHOINKHOROVA T, HENSEN E, GASCON J. A multi-parametric catalyst screening for CO2 hydrogenation to ethanol[J]. ChemCatChem,2021,13(14):3324−3332. doi: 10.1002/cctc.202100302
    [38] AN K, ZHANG S, WANG H, LI N Y, ZHANG Z Y, LIU Y. Co0-Coδ + active pairs tailored by Ga-Al-O spinel for CO2-to-ethanol synthesis[J]. Chem Eng J,2022,433:134606. doi: 10.1016/j.cej.2022.134606
    [39] LI X L, YANG G H, ZHANG M, GAO X F, XIE H J, BAI Y X, WU Y Q, PAN J X, TAN Y S. Insight into the correlation between Cu species evolution and ethanol selectivity in the direct ethanol synthesis from CO hydrogenation[J]. ChemCatChem,2019,11(3):1123−1130. doi: 10.1002/cctc.201801888
    [40] ZHANG Q, WANG S, DONG M, FAN W B. CO2 hydrogenation on metal-organic frameworks-based catalysts: A Mini Review[J]. Front Chem,2022,10:956223. doi: 10.3389/fchem.2022.956223
    [41] QIN Z, LI H, YANG X F, CHEN L Y, LI Y W, SHEN K. Heterogenizing homogeneous cocatalysts by well-designed hollow MOF-based nanoreactors for efficient and size-selective CO2 fixation[J]. Appl Catal B-Environ,2022,307:121163. doi: 10.1016/j.apcatb.2022.121163
    [42] LU X F, LIU Y, HE Y R, KUHN A N, SHIH P C, SUN C J, WEN X D, SHI C, YANG H. Cobalt-based nonprecious metal catalysts derived from metal-organic frameworks for high-rate hydrogenation of carbon dioxide[J]. ACS Appl Mater Inter,2019,11(31):27717−27726. doi: 10.1021/acsami.9b05645
    [43] ZENG L, CAO Y, LI Z, DAI Y H, WANG Y K, AN B, ZHANG J Z, LI H, ZHOU Y, LIN W B, WANG C. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene[J]. ACS Catal,2021,11(18):11696−11705. doi: 10.1021/acscatal.1c01939
    [44] GUTTEROD E, LAZZARINI A, FJERMESTAD T, KAUR G, MANZOLI M, BORDIGA S, SVELLE S, LILLERUD K P, SKULASON E, ØIEN S, NOVA A, OLSBYE U. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: deciphering the role of the metal-organic framework[J]. J Am Chem Soc,2020,142(2):999−1009. doi: 10.1021/jacs.9b10873
    [45] FAN Y, ZHANG J, SHEN Y, ZHENG B, ZHANG W N, HUO F W. Emerging porous nanosheets: From fundamental synthesis to promising applications[J]. Nano Res,2021,14:1−28. doi: 10.1007/s12274-020-3082-4
    [46] CHOE K, ZHENG F B, WANG H, YUAN Y, ZHAO W S, XUE G G, QIU X Y, RI X, SHI X H, WANG Y L, LI G D, TANG Z Y. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks[J]. Angew Chem Int Edit,2020,59:3650−3657. doi: 10.1002/anie.201913453
    [47] SHAO S X, CUI C Q, TANG Z Y, LI G D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products[J]. Nano Res, 2022.
    [48] NIU T C. Old materials with new properties II: the metal carbides[J]. Nano Today,2018,18:12−14. doi: 10.1016/j.nantod.2017.10.001
    [49] ZHANG H Y, HAN H, XIAO L F, WU W. Highly selective synthesis of ethanol via CO2 hydrogenation over CoMoCx catalysts[J]. ChemCatChem,2021,13(14):3333−3339. doi: 10.1002/cctc.202100204
    [50] YE X, MA J G, YU W G, PAN X L, YANG C Y, WANG C, LIU Q G, HUANG Y Q. Construction of bifunctional single-atom catalysts on the optimized β-Mo2C surface for highly selective hydrogenation of CO2 into ethanol[J]. J Energy Chem,2022,67:184−192. doi: 10.1016/j.jechem.2021.10.017
    [51] 高钊. 改性蒙脱土负载钴催化剂浆态床费—托合成反应性能的研究[D]. 西安: 陕西师范大学, 2017.

    GAO Zhao. Performance study of modified montmorillonite-loaded cobalt catalyst slurry bed Fischer-Tropsch synthesis reaction [D]. Xian: Shaanxi Normal University, 2017.
    [52] ZHOU H, CHEN Z X, KOUNTOUPI E, TSOUKALOU A, ABDALA P M, FLORIAN P, FEDOROV A, MULLER C R. Two-dimensional molybdenum carbide 2D-Mo2C as a superior catalyst for CO2 hydrogenation[J]. Nat Commun,2021,12(1):5510. doi: 10.1038/s41467-021-25784-0
    [53] LI Z, WU Y. 2D early transition metal carbides (MXenes) for catalysis[J]. Small,2019,15(29):e1804736. doi: 10.1002/smll.201804736
    [54] CAPARROS F, SOLER L, ROSSELL M, ANGURELL I, PICCOLO L, ROSSELL O, LLORCA J. Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst[J]. ChemCatChem,2018,10(11):2365−2369. doi: 10.1002/cctc.201800362
    [55] WANG L X, WANG L, ZHANG J, LIU X L, WANG H, ZHANG W, YANG Q, MA J Y, DONG X, YOO S J, KIM J G, MENG X J, XIAO F S. Selective hydrogenation of CO2 to ethanol over cobalt catalysts[J]. Angew Chem Int Edit,2018,57(21):6104−6108. doi: 10.1002/anie.201800729
    [56] ALI S, ALI S, TABASSUM N. A review on CO2 hydrogenation to ethanol: reaction mechanism and experimental studies[J]. J Environ Chem Eng,2022,10(1):106962. doi: 10.1016/j.jece.2021.106962
    [57] KIM J, LEE S, LEE S B, CHOI M J, LEE K W. Performance of catalytic reactors for the hydrogenation of CO2 to hydrocarbons[J]. Catal Today, 2006, 115(1/2/3/4), 2006: 228–234.
    [58] XU D, WANG Y Q, DING M Y, HONG X L, LIU G L, TSANG S C. Advances in higher alcohol synthesis from CO2 hydrogenation[J]. Chem,2021,7(4):849−881. doi: 10.1016/j.chempr.2020.10.019
    [59] HE Y M, LIU S L, FU W J, WANG C, MEBRAHTU C, SUN R Y, ZENG F. Thermodynamic analysis of CO2 hydrogenation to higher alcohols (C2−4OH): effects of isomers and methane[J]. ACS Omega,2022,7(19):16502−16514. doi: 10.1021/acsomega.2c00502
    [60] LI M, PHAM T, KO Y, ZHAO K, ZHONG L P, LUO W, ZUTTEL A. Support-dependent Cu–In bimetallic catalysts for tailoring the activity of reverse water gas shift reaction[J]. ACS Sustain Chem Eng,2022,10(4):1524−1535. doi: 10.1021/acssuschemeng.1c06935
    [61] ZHENG X L, GUO L, LI W L, CAO Z R, LIU N Y, ZHANG Q, XING M M, SHI Y Y, GUO J. Insight into the mechanism of reverse water-gas shift reaction and ethanol formation catalyzed by Mo6S8-TM clusters[J]. Mol Catal,2017,439:155−162. doi: 10.1016/j.mcat.2017.06.030
    [62] CAO A, SCHUMANN J, WANG T, ZHANG L N, XIAO J P, BOTHRA P, LIU Y, ABILD P F, NORSKOV J K. Mechanistic insights into the synthesis of higher alcohols from syngas on CuCo alloys[J]. ACS Catal,2018,8(11):10148−10155. doi: 10.1021/acscatal.8b01596
    [63] LIU S H, YANG C S, ZHA S J, SHARAPA D, STUDT F, ZHAO Z J, GONG J L. Moderate surface segregation promotes selective ethanol production in CO2 hydrogenation reaction over CoCu catalysts[J]. Angew Chem Int Edit,2022,61(2):e202109027.
    [64] CHEN W, FILOT I, PESTMAN R, HENSEN E J. Mechanism of cobalt-catalyzed CO hydrogenation: 2. Fischer-Tropsch synthesis[J]. ACS Catal,2017,7(12):8061−8071. doi: 10.1021/acscatal.7b02758
    [65] HE Z H, QIAN Q L, MA J, MENG Q L, ZHOU H C, SONG J L, LIU Z M, HAN B X. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions[J]. Angew Chem,2016,55:737−741. doi: 10.1002/anie.201507585
    [66] CHEN Y, CHOI S, THOMPSON L. Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C sup-ported metal catalysts[J]. J Catal,2016,343:147−156. doi: 10.1016/j.jcat.2016.01.016
    [67] LIU G B, YANG G H, PENG X B, WU J H, TSUBAKI N. Recent advances in the routes and catalysts for ethanol synthesis from syngas[J]. Chem Soc Rev,2022,51(13):1460−4744.
    [68] ZHANG F Y, CHEN K, JIANG Q M, HE S, CHEN Q J, LIU Z M, KANG J C, ZHANG Q H, WANG Y. Selective transformation of methanol to ethanol in the presence of syngas over composite catalysts[J]. ACS Catal,2022,12(14):8451−8461. doi: 10.1021/acscatal.2c01725
    [69] FENG S Q, LIN X S, SONG X G, MEI B B, MU J L, LI J W, LIU Y, JIANG Z, DING Y J. Constructing efficient single Rh sites on activated carbon via surface carbonyl groups for methanol carbonylation[J]. ACS Catal,2021,11(2):682−690. doi: 10.1021/acscatal.0c03933
    [70] ZHOU W, KANG J C, CHENG K, HE S, SHI J Q, ZHOU C, ZHANG Q H, CHEN J C, PENG L M, CHEN M S, WANG Y. Direct conversion of syngas into methyl acetate, ethanol and ethylene by relay catalysis via dimethyl ether intermediate[J]. Angew Chem Int Edit,2018,57:12012. doi: 10.1002/anie.201807113
    [71] ZHANG F, CHEN Z Y, FANG X D, LIU H C, LIU Y, ZHU W L. Catalytic activity of Cu/ZnO catalysts mediated by MgO promoter in hydrogenation of methyl acetate to ethanol[J]. J Energy Chem,2021,61:203−209. doi: 10.1016/j.jechem.2021.03.028
    [72] WANG X L, RAMIREZ P, LIAO W J, RODRIGUEZ J, LIU P. Cesium-induced active sites for C−C coupling and ethanol synthesis from CO2 hydrogenation on Cu/ZnO(0001̅) Surfaces[J]. J Am Chem Soc,2021,143(33):13103−13112. doi: 10.1021/jacs.1c03940
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  37
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-16
  • 录用日期:  2022-10-16
  • 修回日期:  2022-10-08
  • 网络出版日期:  2022-10-24

目录

    /

    返回文章
    返回