留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

载铈白云石基黏土陶催化松木气化研究

牛永红 钱相儒 刘峥 李义科

牛永红, 钱相儒, 刘峥, 李义科. 载铈白云石基黏土陶催化松木气化研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60066-5
引用本文: 牛永红, 钱相儒, 刘峥, 李义科. 载铈白云石基黏土陶催化松木气化研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60066-5
NIU Yong-hong, QIAN Xiang-ru, LIU Zheng, LI Yi-ke. Study on catalytic gasification of pine wood with cerium loaded dolomite based clay ceramics[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60066-5
Citation: NIU Yong-hong, QIAN Xiang-ru, LIU Zheng, LI Yi-ke. Study on catalytic gasification of pine wood with cerium loaded dolomite based clay ceramics[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60066-5

载铈白云石基黏土陶催化松木气化研究

doi: 10.1016/S1872-5813(22)60066-5
基金项目: 国家自然科学基金(52160013,51768054),内蒙古自治区高等学校青年科技英才支持计划资助(NJYT22062),内蒙古自然科学基金(2021LHMS05026),高教专项研究生教育项目(GJY2020015)和内蒙古教育科学十三五规划(NGJGH2020152)资助
详细信息
    作者简介:

    牛永红(1977-),男,教授,主要从事可再生能源资源高效清洁利用研究, E-mail:niuyonghong@imust.edu.cn

    通讯作者:

    E-mail: niuyonghong@imust.edu.cn

  • 中图分类号: TK6

Study on catalytic gasification of pine wood with cerium loaded dolomite based clay ceramics

Funds: The project was supported by the National Natural Science Foundation of China (52160013,51768054), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (NJYT22062),Inner Mongolia Natural Science Foundation (2021LHMS05026),Special Postgraduate Education Project for Higher Education (GJY2020015) and Inner Mongolia Educational Science 13th Five Year Plan Project (NGJGH2020152)
  • 摘要: 以白云石为主要骨料,采用粉末烧结一步法制备黏土陶载体,经浸渍负载稀土Ce后煅烧,制得新型载铈白云石基(Ce-Dol)黏土陶催化剂,用于松木棒为原料的生物质催化气化实验,实验系统采用自行建设的两段式气化炉。研究不同载Ce量、不同气化温度及水蒸气流量条件下Ce-Dol黏土陶催化剂的催化气化性能,并确定最优工况。研究结果表明,白云石基黏土陶载铈后可有效提高催化活性,使气化产物中部分官能团伸缩振动峰吸光度降低,有效促进焦油的二次裂解,提高生物质气化气品质。保持其他工况不变,载Ce量为6%时,气化产物中H2体积分数最高,为32.43%;随着气化温度的升高,焦油中脂肪族羧酸、酮类化合物逐渐分解成小分子(如CO、CO2等)化合物,H2整体呈上升趋势,900 ℃时达到最高值;气化过程中适量的水蒸气可以有效促进水煤气反应的正向进行,流量为4 mL/min时,H2体积分数为37.37%。
  • 图  1  实验装置示意图

    Figure  1  Schematic diagram of experimental platform

    1:Nitrogen bottle; 2: Flowmeter; 3:Water storage tank; 4: Adjustable speed constant flow water pump; 5: Gasifier; 6: Pine rod fuel; 7: Temperature control cabinet; 8: Catalyst material; 9: Catalytic reformer; 10: Tar absorption unit; 11: Air bag; 12: Experimental station

    图  2  不同负载量的白云石催化剂SEM照片

    Figure  2  SEM images of catalysts with different loadings

    图  3  负载不同Ce含量的催化剂XRD谱图

    Figure  3  XRD spectra of catalysts loaded with different Ce contents

    图  4  气体产物随Ce负载量的变化曲线

    Figure  4  Variation of gas products with Ce loading

    图  5  6-Ce-Dol催化作用下气体组分随气化温度的变化

    Figure  5  Variation of gas composition with gasification temperature under the catalysis of 6-Ce-Dol

    图  6  6-Ce-Dol催化作用下气体体积分数随水蒸气流量的变化

    Figure  6  Variation of gas volume fraction with water vapor flow rate under catalysis of 6-Ce-Dol

    图  7  不同Ce负载量催化剂催化气化的液相产物FT-IR谱图

    Figure  7  FT-IR spectra of tar products from catalytic gasification with catalysts of different Ce loadings (850℃)

    图  8  6-Ce-Dol催化作用下不同气化温度催化气化的液相产物FT-IR谱图

    Figure  8  FT-IR spectra of tar products from catalytic gasification at different gasification temperatures with 6-Ce-Dol

    图  9  6-Ce-Dol催化作用下不同水蒸气流量催化气化的液相产物FT-IR谱图

    Figure  9  FT-IR spectra of tar products of catalytic gasification under different steam flow rates under the catalysis of 6-Ce-Dol

    表  1  松木燃料棒的元素分析及工业分析

    Table  1  Proximate and ultimate analysis of pine rod

    Elemental analysis wad/% Industrial analysis wd/%
    CHONS FCVA
    46.645.4643.760.130.1216.6781.971.36
    下载: 导出CSV

    表  2  黏土陶BET分析

    Table  2  BET analysis of clay ceramics

    SampleSpecific surface
    area /(m2·g−1)
    Pore volume /
    (cm3·g−1)
    Aperture
    /nm
    Clay pottery before
    calcination
    0.5680.00217.291
    Unloaded clay pottery
    after calcination
    6.6720.05318.155
    6%-Ce-Dol5.8710.03116.866
    下载: 导出CSV
  • [1] 姚彬, 张文存, 朱瑞龙. 生物质能源制备合成气的技术探讨及研究现状[J]. 现代化工,2021,41(5):54−58.

    YAO Bin, ZHANG Wen-cun, ZHU Rui-long. Technical discussion and research status of syngas from biomass energy[J]. Mod Chem Ind,2021,41(5):54−58.
    [2] 马隆龙, 唐志华, 汪丛伟, 孙永明, 吕雪峰, 陈勇. 生物质能研究现状及未来发展策略[J]. 中国科学院院刊,2019,34(4):434−442.

    MA Long-long, TANG Zhi-hua, WANG Cong-wei, SUN Yong-ming, LYU Xue-feng, CHEN Yong. Research status and future development strategy of biomass energy[J]. Bull Chin Aca Sci,2019,34(4):434−442.
    [3] 李亮荣, 李秋平, 艾盛, 邓志伟, 倪智超, 邱浩, 熊磊. 传统化石与新型生物质能源重整制氢研究现状[J]. 化学与生物工程,2021,38(11):1−6. doi: 10.3969/j.issn.1672-5425.2021.11.001

    LI Rong-liang, LI Qiu-ping, AI Sheng, DENG Zhi-wei, NI Zhi-chao, QIU Hao, XIONG Lei. Research status of hydrogen production from reforming of fossil energy and new biomass energy[J]. Chem Bioeng,2021,38(11):1−6. doi: 10.3969/j.issn.1672-5425.2021.11.001
    [4] SUN Z, XU B, RONY A H, TOAN S, CHEN S, GASEM K A M, ADIDHARMA H,  FAN M,  XIANG W. Thermogravimetric and kinetics investigation of pine wood pyrolysis catalyzed with alkali-treated CaO/ZSM-5[J]. Energy Convers Manage,2017,146:182−194. doi: 10.1016/j.enconman.2017.04.104
    [5] ZHANG Z, ZHU Z,  SHEN B, LIU L. Insights into biochar and hydrochar production and applications: A review[J]. Energy,2019,171:581−598. doi: 10.1016/j.energy.2019.01.035
    [6] 肖亚辉, 刘勇, 乔聪震, 徐绍平. 解耦双回路气化系统中生物质催化水蒸气气化制富氢气体[J]. 燃料化学学报,2019,47(12):1430−1439. doi: 10.3969/j.issn.0253-2409.2019.12.003

    XIAO Ya-hui, LIU Yong, QIAO Cong-zhen, XU Shao-ping. Hydrogen-rich gas production from catalytic steam gasification of biomass in a decoupled dual loop gasification system[J]. J. Fuel Chem Technol,2019,47(12):1430−1439. doi: 10.3969/j.issn.0253-2409.2019.12.003
    [7] 何培红, 张伟伟, 黄胜, 吴幼青, 吴诗勇. 稻壳气化过程中碳微观结构及气化活性演变历程研究[J]. 燃料化学学报,2021,49(6):759−765. doi: 10.1016/S1872-5813(21)60060-9

    HE Pei-hong, ZHANG Wei-wei, HUANG Sheng, WU You-qing, WU Shi-yong. Evolution of carbon microstructure and gasification activity during rice husk gasification[J]. J Fuel Chem Technol,2021,49(6):759−765. doi: 10.1016/S1872-5813(21)60060-9
    [8] 张泽, 赵洪君, 孟洁, 洪晨, 李益飞. 生物质的热解及生物油提质的研究进展[J]. 环境工程,2021,39(3):161−171.

    ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. Research progress of biomass pyrolysis and bio oil upgrading[J]. Environ Eng,2021,39(3):161−171.
    [9] 肖陆飞, 哈云, 孟飞, 梁建军, 汪蓓蓓. 生物质气化技术研究与应用进展[J]. 现代化工,2020,40(12):68−72+76.

    XIAO Lu-fei, HA Yun, MENG Fei, LIANG Jian-jun, WANG Bei-bei. Research and application progress on biomass gasification technologies[J]. Mod Chem Ind,2020,40(12):68−72+76.
    [10] 宁思云, 应浩, 徐卫, 尹航, 朱立, 贾爽. 木屑炭水蒸气催化气化制取合成气研究[J]. 太阳能学报,2020,41(2):20−26.

    NING Si-yun, YING Hao, XU Wei, YIN Hang, ZHU Li, JIA Shuang. Catalytic steam gasification of sawdust char for syngas[J]. Acta Energy Sol Sin,2020,41(2):20−26.
    [11] 王婷婷, 曾玺, 韩振南, 王芳, 武鹏, 许光文. 微型流化床中生物质半焦水蒸气气化反应特性及动力学研究[J]. 化工学报,2022,73(1):294−307.

    WANG Ting-ting, ZENG Xi, HAN Zhen-nan, WANG Fang, WU Peng, XU Guang-wen. Reaction characteristics and kinetics of biomass char-steam gasification in micro-fluidized bed reaction analyzer[J]. J Chem Ind Eng,2022,73(1):294−307.
    [12] 汪大千, 姚丁丁, 杨海平, 王贤华, 陈汉平. Ni/C催化剂对生物质气化制氢的影响[J]. 中国电机工程学报,2017,37(19):5682−5687+5845. doi: 10.13334/J.0258-8013.PCSEE.160565

    WANG Da-qian, YAO Ding-ding, YANG Hai-ping, WANG Xian-hua, CHEN Han-ping. Influence of Ni/C catalysts in hydrogen production from biomass gasification[J]. Proc CSEE,2017,37(19):5682−5687+5845. doi: 10.13334/J.0258-8013.PCSEE.160565
    [13] 方书起, 王毓谦, 李攀, 陈志勇, 陈玮, 白净, 常春. 生物油催化重整制氢研究进展[J]. 化工进展,2022,41(3):1330−1339.

    FANG Shu-qi, WANG Yu-qian, LI Pan, CHEN Zhi-yong, CHEN Wei, BAI Jing, CHANG Chun. Research progress of hydrogen production by catalytic reforming of bio-oil[J]. Chem Ind Eng Prog,2022,41(3):1330−1339.
    [14] 毕冬梅, 张凯真, 易维明, 柳善建, 李泊铮. 白云石基多孔陶瓷负载Al2O3催化生物质热解试验[J]. 农业机械学报,2019,50(10):315−322. doi: 10.6041/j.issn.1000-1298.2019.10.036

    BI Dong-mei, ZHANG Kai-zhen, YI Wei-ming, LIU Shan-jian, LI Po-zheng. Experiment on Al2O3 catalyzed biomass pyrolysis of dolomite-based porous ceramics[J]. Trans Chin Soc Agric Mach,2019,50(10):315−322. doi: 10.6041/j.issn.1000-1298.2019.10.036
    [15] 张波, 张力, 杨仲卿, 闫云飞, 冉景煜, 蒲舸, 何江, 秦昌雷. NiO/CaO添加剂下生物质水蒸气气化特性[J]. 工程热物理学报,2016,37(9):1961−1968.

    ZHANG Bo, ZHANG Li, YANG Zhong-qing, YAN Yun-Fei, RAN Jing-Yu, PU Ge, HE Jiang, QIN Chang-Lei. Influence of NiO/CaO additive on biomass steam gasification[J]. J Eng Thermophys,2016,37(9):1961−1968.
    [16] 梁鹏, 王晓航, 张希望, 魏爱芳, 姜万敏, 张荣, 毕继诚. 含尘焦油在改性白云石催化剂上的裂解特性[J]. 燃料化学学报,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005

    LIANG Peng, WANG Xiao-hang, ZHANG Xi-wang, WEI Ai-fang, JIANG Wan-min, ZHANG Rong, BI Ji-cheng. Cracking characteristics of dust-containing tar over modified dolomite catalyst[J]. J Fuel Chem Technol,2015,43(8):932−939. doi: 10.3969/j.issn.0253-2409.2015.08.005
    [17] 孙青, 陈纪忠, 吴祖成. CeO2改性的镍基白云石催化剂催化苯甲腈蒸汽裂解的反应[J]. 高校化学工程学报,2018,32(2):368−376. doi: 10.3969/j.issn.1003-9015.2018.02.015

    SUN Qing, CHEN Ji-zhong, WU Zu-cheng. Steam cracking of benzonitrile catalyzed by CeO2 modified Ni/dolomite[J]. J Chem Eng Chin Univ,2018,32(2):368−376. doi: 10.3969/j.issn.1003-9015.2018.02.015
    [18] 赵雨佳, 邹俊, 胡俊豪, 杨海平, 杨光, 陈汉平. CeO2添加比例对Fe基催化剂催化纤维素气化制氢的影响[J]. 农业工程学报,2020,36(20):269−274. doi: 10.11975/j.issn.1002-6819.2020.20.032

    ZHAO Yu-jia, ZOU Jun, HU Jun-hao, YANG Hai-ping, YANG Guang, CHEN Han-ping. Effects of CeO2 addition ratio on hydrogen production during cellulose gasification catalyzed by Fe-based catalysts[J]. Trans Chin Soc Agric Eng,2020,36(20):269−274. doi: 10.11975/j.issn.1002-6819.2020.20.032
    [19] 牛永红, 宋子曌, 李义科, 王文才, 温建军, 郑坤灿. 载镧白云石催化剂对松木催化气化性能的研究[J]. 燃料化学学报,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1

    NIU Yong-hong, SONG Zi-zhao, LI Yi-ke, WANG Wen-cai, WEN Jian-jun, ZHENG Kun-can. Preparation of lanthanum modified dolomite catalyst and study on its catalytic gasification performance of pine wood[J]. J Fuel Chem Technol,2021,49(1):47−54. doi: 10.1016/S1872-5813(21)60005-1
    [20] 张艳敏, 邹达, 赵渊, 钟梅, 马凤云. 双金属催化剂对煤焦油模型化合物催化裂解行为的影响[J]. 化工学报,2017,68(10):3805−3815.

    ZHANG Yan-min, ZOU Da, ZHAO Yuan, ZHONG Mei, MA Feng-yun. Effect of bimetallic catalysts on cracking behavior of coal tar model compounds[J]. J Chem Ind Eng,2017,68(10):3805−3815.
    [21] 李雪萍, 曾强. 光谱分析在煤结构研究中的进展[J]. 光谱学与光谱分析,2022,42(2):350−357.

    LI Xue-ping, ZENG Qiang. Development and progress of spectral analysis in coal structure research[J]. Spectrosc Spectral Anal,2022,42(2):350−357.
    [22] 牛永红, 蔡尧尧, 李义科, 王文才. 半焦催化剂对生物质热解产物催化重整的试验研究[J]. 热能动力工程,2020,35(7):207−214.

    NIU Yong-hong, CAI Yao-yao, LI Yi-ke, WANG Wen-cai. Experimental study on catalytic reforming of biomass pyrolysis products by semi-coke catalyst[J]. J Eng Therm Energy Power,2020,35(7):207−214.
    [23] 牛永红, 张骏, 蔡尧尧, 王文才, 李义科, 杨占峰. 基于载La半焦基催化的松木热解试验[J]. 农业机械学报,2021,52(1):286−293. doi: 10.6041/j.issn.1000-1298.2021.01.032

    NIU Yong-hong, ZHANG Jun, CAI Yao-yao, WANG Wen-cai, LI Yi-ke, YANG Zhan-feng. Experiment on pine pyrolysis based on semi-coke catalyzed by La[J]. Trans Chin Soc Agric Mach,2021,52(1):286−293. doi: 10.6041/j.issn.1000-1298.2021.01.032
    [24] 刘嘉辉, 孙道安, 杜咏梅, 李春迎, 刘昭铁, 吕剑. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展,2021,40(9):4782−4790.

    LIU Jia-hui, SUN Dao-an, DU Yong-mei, LI Chun-ying, LIU Zhao-tie, LYU Jian. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chem Ind Eng Prog,2021,40(9):4782−4790.
    [25] 胡浩权, 狄敏娜, 王明义, 靳立军, 王德超. 煤热解焦油催化裂解和乙烷水蒸气重整耦合提高焦油品质[J]. 煤炭学报,2020,45(1):386−392.

    HU Hao-quan, DI Min-na, WANG Ming-yi, JIN Li-jun, WANG De-chao. Upgrading of coal pyrolysis tar by catalytic cracking coupled with steam reforming of ethane[J]. J China Coal Soc,2020,45(1):386−392.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-18
  • 录用日期:  2022-06-06
  • 修回日期:  2022-05-18
  • 网络出版日期:  2022-10-25

目录

    /

    返回文章
    返回