留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究

彭新宇 刘丽君 沈伯雄 边瑶 苏立超

彭新宇, 刘丽君, 沈伯雄, 边瑶, 苏立超. M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60069-0
引用本文: 彭新宇, 刘丽君, 沈伯雄, 边瑶, 苏立超. M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60069-0
PENG Xin-yu, LIU Li-jun, SHEN Bo-xiong, BIAN Yao, SU Li-chao. Study on the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60069-0
Citation: PENG Xin-yu, LIU Li-jun, SHEN Bo-xiong, BIAN Yao, SU Li-chao. Study on the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60069-0

M/ZSM-5 (M=Cu、Mn、Fe、Ce、Ti) 催化氧化甲苯性能研究

doi: 10.1016/S1872-5813(22)60069-0
基金项目: 国家自然科学基金区域联合重点(U20A20302),河北省创新群体(E2021202006),天津科技专项(19ZXSZSN00050, 19ZXSZSN00070),河北省科技专项(20373701D),河北省重大成果转化(21283701Z).
详细信息
    通讯作者:

    E-mail:shenbx@hebut.edu.cn

  • 中图分类号: X511

Study on the catalytic oxidation of toluene over M/ZSM-5 (M=Cu, Mn, Fe, Ce, Ti) catalysts

Funds: The research was supported by Joint Funds of the National Natural Science Foundation of China (U20A20302), Innovative group projects in Hebei Province (E2021202006), Key R & D projects in Tianjin (19ZXSZSN00050, 19ZXSZSN00070), Key R & D projects in Hebei Province (20373701D), and Project of great transformation of scientific and technical research in Hebei Province (21283701Z).
  • 摘要: 以ZSM-5分子筛为载体,采用浸渍法负载Cu、Mn、Fe、Ce、Ti制备一系列金属氧化物催化剂,利用SEM、XRD、N2吸附-脱附、XPS、H2 -TPR对催化剂的理化性质进行了表征,并考察了催化剂的催化氧化甲苯性能。结果表明,Cu/ZSM-5表面粗糙,金属元素分布均匀,具有较好的孔径结构、良好的低温还原性和丰富的吸附氧物种,且负载量为5 wt.%的Cu/ZSM-5表现出优异的甲苯催化活性和最佳的抗硫性,在SO2环境下T90为224 ℃ (GHSV=24000 h−1)。原位红外测试结果表明甲苯的降解遵循以下途径:甲苯首先被吸附在催化剂表面形成吸附态甲苯,随后在催化剂作用下依次被转化为苯甲醛和苯甲酸,再经过开环反应形成马来酸、羧酸等小分子有机物,最终被氧化为CO2和H2O。
  • 图  1  (a)ZSM-5、(b)Cu/ZSM-5、(c)Ce/ZSM-5的SEM图像和(d) Cu/ZSM-5 (e) Ce/ZSM-5的EDS mapping图像

    Figure  1  SEM images of (a)ZSM-5, (b)Cu/ZSM-5, (c)Ce/ZSM-5 and EDS mapping images of (d) Cu/ZSM-5, (e) Ce/ZSM-5

    图  2  不同催化剂的XRD谱图

    Figure  2  XRD patterns of different catalysts

    图  3  不同催化剂的N2吸附-脱附等温线

    Figure  3  N2 adsorption/desorption isotherms of different catalysts

    图  4  不同催化剂的XPS O 1s谱图

    Figure  4  O 1s XPS spectra of different catalysts

    图  5  不同催化剂的H2 -TPR谱图

    Figure  5  H2 -TPR profiles of different catalysts

    图  6  不同催化剂的(a)甲苯氧化效率和(b)反应速率

    Figure  6  (a)Toluene oxidation and (b) reaction rates of different catalysts

    图  7  不同催化剂在SO2存在下的甲苯氧化效率

    Figure  7  Toluene oxidation of different catalysts with SO2

    图  8  不同金属负载量的Cu/ZSM-5的甲苯氧化效率

    Figure  8  Toluene oxidation of Cu/ZSM-5 with different metal loading

    图  9  Cu/ZSM-5在不同甲苯浓度下的甲苯氧化效率

    Figure  9  Toluene oxidation of Cu/ZSM-5 at different toluene concentrations

    图  10  (a) Cu/ZSM-5、(b) Fe/ZSM-5、(c) Ce/ZSM-5在250 ℃下和(d) Cu/ZSM-5在不同温度下催化甲苯的原位红外谱图

    Figure  10  In-situ DRIFTS spectra of toluene oxidation over (a) Cu/ZSM-5, (b) Fe/ZSM-5, (c) Ce/ZSM-5 at 250 ℃ and (d) Cu/ZSM-5 at different temperatures

    图  11  甲苯催化氧化机理

    Figure  11  Reaction mechanism of toluene catalytic oxidation

    表  1  不同催化剂的孔结构参数

    Table  1  Structure properties of different catalysts.

    CatalystsBET surface area
    (cm2·g−1)
    Micropore volume
    (cm3·g−1)
    Mesopore volume
    (cm3·g−1)
    Pore volume
    (cm3·g−1)
    Average pore diameter
    (nm)
    ZSM-5400.70.0850.1750.2612.60
    Cu/ZSM-5276.80.0830.0970.1802.61
    Mn/ZSM-5291.10.0820.1060.1882.58
    Fe/ZSM-5264.90.0890.0770.1662.50
    Ce/ZSM-5294.60.0980.0780.1752.38
    Ti/ZSM-5310.40.0750.1340.2092.69
    下载: 导出CSV

    表  2  不同催化剂中的氧物种摩尔比和耗氢量

    Table  2  Molar ratio of oxygen species of different catalysts and H2 consumption.

    CatalystsCu/ZSM-5Mn/ZSM-5Fe/ZSM-5Ti/ZSM-5Ce/ZSM-5
    Olatt(%)3.9816.7512.8127.9815.81
    Oads(%)94.2781.3187.1967.1780.87
    Oads/Olatt23.694.856.812.405.12
    H2 consumption
    (mmol·g−1)
    2.101.442.190.540.15
    下载: 导出CSV
  • [1] LI W B, WANG J X, GONG H. Catalytic combustion of VOCs on non-noble metal catalysts [J]. Catal Today, 2009, 148(1–2): 81–87.
    [2] WANG H, NIE L, LI J, WANG Y, WANG G, WANG J, HAO Z. Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries[J]. Chin Sci Bull,2013,58(7):724−730. doi: 10.1007/s11434-012-5345-2
    [3] GUO Y L, WEN M C, LI G Y, AN T C. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Appl Catal B-Environ,2021,281:119447. doi: 10.1016/j.apcatb.2020.119447
    [4] ZHAI X, JING F, LI L, JIANG X, ZHANG J, MA J, CHU W. Toluene catalytic oxidation over the layered MOx-δ-MnO2 (M = Pt, Ir, Ag) composites originated from the facile self-driving combustion method[J]. Fuel,2021,283:118888. doi: 10.1016/j.fuel.2020.118888
    [5] XIE Y, ZHANG L, JIANG Y, HAN S, WANG L, MENG X, XIAO F-S. Enhanced catalytic performance of methane combustion over zeolite-supported Pd catalysts with the lanthanum[J]. Catal Today,2021,364:16−20. doi: 10.1016/j.cattod.2019.11.030
    [6] LI J H, XIAO G F, GUO Z Y, LIN B L, HU Y, FU M L, YE D Q. ZSM-5-supported V-Cu bimetallic oxide catalyst for remarkable catalytic oxidation of toluene in coal-fired flue gas[J]. Chem Eng J,2021,419:129675. doi: 10.1016/j.cej.2021.129675
    [7] HU J, LI W B, LIU R F. Highly efficient copper-doped manganese oxide nanorod catalysts derived from CuMnO hierarchical nanowire for catalytic combustion of VOCs[J]. Catal Today,2018,314:147−153. doi: 10.1016/j.cattod.2018.02.009
    [8] LIN L-Y, BAI H. Salt-templated synthesis of Ce/Al catalysts supported on mesoporous silica for acetone oxidation[J]. Appl Catal B-Environ,2014,148-149:366−376. doi: 10.1016/j.apcatb.2013.11.026
    [9] ZHU L, ZHANG L, QU H X, ZHONG Q. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. J Mol Catal A:Chem,2015,409:207−215. doi: 10.1016/j.molcata.2015.08.029
    [10] LI J R, ZHANG W P, LI C, XIAO H, HE C. Insight into the catalytic performance and reaction routes for toluene total oxidation over facilely prepared Mn-Cu bimetallic oxide catalysts[J]. Appl Surf Sci,2021,550:149179. doi: 10.1016/j.apsusc.2021.149179
    [11] LIU G, TIAN Y, ZHANG B, WANG L, ZHANG X. Catalytic combustion of VOC on sandwich-structured Pt@ZSM-5 nanosheets prepared by controllable intercalation[J]. J Hazard Mater,2019,367:568−576. doi: 10.1016/j.jhazmat.2019.01.014
    [12] AZIZ A, KIM S, KIM K S. Fe/ZSM-5 zeolites for organic-pollutant removal in the gas phase: Effect of the iron source and loading[J]. J Environ Chem Eng,2016,4(3):3033−3040. doi: 10.1016/j.jece.2016.06.021
    [13] SUN P, WANG W, DAI X, WENG X, WU Z. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions[J]. Appl Catal B-Environ,2016,198:389−397. doi: 10.1016/j.apcatb.2016.05.076
    [14] CHENG J, SONG L, WU R, LI S, SUN Y, ZHU H, QIU W, HE H. Promoting effect of microwave irradiation on CeO2-TiO2 catalyst for selective catalytic reduction of NO by NH3[J]. J Rare Earth,2020,38(1):59−69. doi: 10.1016/j.jre.2019.04.014
    [15] LI S M, HAO Q L, ZHAO R Z, LIU D L, DUAN H Z, DOU B J. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chem Eng J,2016,285:536−543. doi: 10.1016/j.cej.2015.09.097
    [16] ZHENG J, CHEN Z, FANG J F, WANG Z, ZUO S F. MCM-41 supported nano-sized CuO-CeO2 for catalytic combustion of chlorobenzene[J]. J Rare Earth,2020,38(9):933−940. doi: 10.1016/j.jre.2019.06.005
    [17] YANG K, SUN Q, XUE F, LIN D. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. J Hazard Mater,2011,195:124−131. doi: 10.1016/j.jhazmat.2011.08.020
    [18] WANG J, LI J, JIANG C, ZHOU P, ZHANG P, YU J. The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air[J]. Appl Catal B-Environ,2017,204:147−155. doi: 10.1016/j.apcatb.2016.11.036
    [19] LEI J, WANG S, LI J, XU Y, LI S. Different effect of Y (Y = Cu, Mn, Fe, Ni) doping on Co3O4 derived from Co-MOF for toluene catalytic destruction[J]. Chem Eng Sci,2022,251:117436. doi: 10.1016/j.ces.2022.117436
    [20] SHI Y, GUO X, SHI Z, ZHOU R. Transition metal doping effect and high catalytic activity of CeO2-TiO2 for chlorinated VOCs degradation[J]. J Rare Earth,2022,40(5):745−752. doi: 10.1016/j.jre.2021.02.005
    [21] ZHANG S L, ZHONG Q, ZHAO W, LI Y T. Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature[J]. Chem Eng J,2014,253:207−216. doi: 10.1016/j.cej.2014.04.045
    [22] KIM J, JANG E, JEONG Y, BAIK H, CHO S J, KANG C Y, KIM C H, CHOI J. A Cu-impregnated ZSM-5 zeolite for active cold start hydrocarbon removal: Cation-type-dependent Cu species and their synergetic HC adsorption/oxidation functions[J]. Chem Eng J,2022,430:132552. doi: 10.1016/j.cej.2021.132552
    [23] XUE H, GUO X, MENG T, MAO D, MA Z. Poisoning effect of K with respect to Cu/ZSM-5 used for NO reduction[J]. Colloid Interfac Sci,2021,44:100465. doi: 10.1016/j.colcom.2021.100465
    [24] YASHNIK S A, TARAN O P, SUROVTSOVA T A, AYUSHEEV A B, PARMON V N. Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6 G dye[J]. J Environ Chem Eng,2022,10(3):107950. doi: 10.1016/j.jece.2022.107950
    [25] ZHA K, FENG C, HAN L, LI H, YAN T, KUBOON S, SHI L, ZHANG D. Promotional effects of Fe on manganese oxide octahedral molecular sieves for alkali-resistant catalytic reduction of NOx: XAFS and in situ DRIFTs study[J]. Chem Eng J,2020,381:122764. doi: 10.1016/j.cej.2019.122764
    [26] WU Y S, FENG R, SONG C J, XING S T, GAO Y Z, MA Z C. Effect of reducing agent on the structure and activity of manganese oxide octahedral molecular sieve (OMS-2) in catalytic combustion of o-xylene[J]. Catal Today,2017,281:500−506. doi: 10.1016/j.cattod.2016.05.024
    [27] MA Y, LI W, WANG H, CHEN J, WEN J, XU S, TIAN X, GAO L, HOU Z, ZHANG Q, YANG H. Enhanced performance of iron-cerium NO reduction catalysts by sulfuric acid treatment: The synergistic effect of surface acidity and redox capacity[J]. Appl Cacal A-Gen,2021,621:118200. doi: 10.1016/j.apcata.2021.118200
    [28] CAO X, LU J, ZHENG X, HE D, ZHU W, ZHAO Y, ZHANG W, TIAN R, LUO Y. Regulation of the reaction pathway to design the high sulfur/coke-tolerant Ce-based catalysts for decomposing sulfur-containing VOCs[J]. Chem Eng J,2022,429:132473. doi: 10.1016/j.cej.2021.132473
    [29] WANG J, GUO X, SHI Y, ZHOU R. Synergistic effect of Pt nanoparticles and micro-mesoporous ZSM-5 in VOCs low-temperature removal[J]. J Environ Sci,2021,107:87−97. doi: 10.1016/j.jes.2021.01.033
    [30] YAN Y, WANG L, ZHANG H P. Catalytic combustion of volatile organic compounds over Co/ZSM-5 coated on stainless steel fibers[J]. Chem Eng J,2014,255:195−204. doi: 10.1016/j.cej.2014.05.141
    [31] ZHANG C, HUANG H, LI G, WANG L, SONG L, LI X. Zeolitic acidity as a promoter for the catalytic oxidation of toluene over MnOx/HZSM-5 catalysts[J]. Catal Today,2019,327:374−381. doi: 10.1016/j.cattod.2018.03.019
    [32] ZHANG Z X, GONG Y, XU J W, ZHANG Y, XIAO Q Y, XI R, XU X L, FANG X Z, WANG X. Dissecting La2Ce2O7 catalyst to unravel the origin of the surface active sites devoting to its performance for oxidative coupling of methane (OCM)[J]. Catal Today,2022,400-401:73−81. doi: 10.1016/j.cattod.2021.11.012
    [33] WANG C P, WANG Z, MAO S J, CHEN Z R, WANG Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts[J]. Chin J Catal,2022,43(4):928−955. doi: 10.1016/S1872-2067(21)63924-4
    [34] VELLINGIRI K, KUMAR P, DEEP A, KIM K-H. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chem Eng J,2017,307:1116−1126. doi: 10.1016/j.cej.2016.09.012
    [35] PAN H, CHEN Z, MA M, GUO T, LING X, ZHENG Y, HE C, CHEN J. Mutual inhibition mechanism of simultaneous catalytic removal of NO and toluene on Mn-based catalysts[J]. J Colloid Interface Sci,2022,607:1189−1200. doi: 10.1016/j.jcis.2021.09.110
    [36] WANG Z, XIE K, ZHENG J, ZUO S. Studies of sulfur poisoning process via ammonium sulfate on MnO2/γ-Al2O3 catalyst for catalytic combustion of toluene[J]. Appl Catal B-Environ,2021,298:120595. doi: 10.1016/j.apcatb.2021.120595
    [37] HU P, WENG Q, LI D, LV T, WANG S, ZHUO Y. Effects of O2, SO2, H2O and CO2 on As2O3 adsorption by gamma-Al2O3 based on DFT analysis[J]. J Hazard Mater,2021,403:123866. doi: 10.1016/j.jhazmat.2020.123866
    [38] HOU Z, DAI L, LIU Y, DENG J, JING L, PEI W, GAO R, FENG Y, DAI H. Highly efficient and enhanced sulfur resistance supported bimetallic single-atom palladium-cobalt catalysts for benzene oxidation[J]. Appl Catal B-Environ,2021,285:119844. doi: 10.1016/j.apcatb.2020.119844
    [39] LIU H L, YE C, XU Y S, WANG Q S. Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar[J]. Energy,2022,247:123409. doi: 10.1016/j.energy.2022.123409
    [40] AHMADI M, HAGHIGHI M, KAHFOROUSHAN D. Influence of active phase composition (Mn, Ni, MnxNi10-x ) on catalytic properties and performance of clinoptilolite supported nanocatalysts synthesized using ultrasound energy toward abatement of toluene from polluted air[J]. Process Saf Environ Prot,2017,106:294−308. doi: 10.1016/j.psep.2016.06.029
    [41] WANG Z, YANG H, LIU R, XIE S, LIU Y, DAI H, HUANG H, DENG J. Probing toluene catalytic removal mechanism over supported Pt nano- and single-atom-catalyst[J]. J Hazard Mater,2020,392:122258. doi: 10.1016/j.jhazmat.2020.122258
    [42] XU W C, WANG N, CHEN Y D, CHEN J D, XU X X, YU L, CHEN L M, WU J L, FU M L, ZHU A M, YE D Q. In situ FT-IR study and evaluation of toluene abatement in different plasma catalytic systems over metal oxides loaded gamma-AL(2)O(3)[J]. Catal Commun,2016,84:61−66. doi: 10.1016/j.catcom.2016.06.004
    [43] WEI G C, ZHANG Q L, ZHANG D H, WANG J, TANG T, WANG H M, LIU X, SONG Z X, NING P. The influence of annealing temperature on copper-manganese catalyst towards the catalytic combustion of toluene: The mechanism study[J]. Appl Surf Sci,2019,497:143777. doi: 10.1016/j.apsusc.2019.143777
    [44] WANG Z W, MA P J, ZHENG K, WANG C, LIU Y X, DAI H X, WANG C C, HSI H C, DENG J G. Size effect, mutual inhibition and oxidation mechanism of the catalytic removal of a toluene and acetone mixture over TiO2 nanosheet-supported Pt nanocatalysts[J]. Appl Catal B-Environ,2020,274:118963. doi: 10.1016/j.apcatb.2020.118963
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  14
  • HTML全文浏览量:  8
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-29
  • 录用日期:  2022-10-18
  • 修回日期:  2022-10-16
  • 网络出版日期:  2022-10-31

目录

    /

    返回文章
    返回