留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Cu/Hβ催化剂NH3选择性催化还原NO性能研究

孙锦昌 任翠涛 赵明新 田春雨 迟姚玲 赵田田 王虹

孙锦昌, 任翠涛, 赵明新, 田春雨, 迟姚玲, 赵田田, 王虹. Cu/Hβ催化剂NH3选择性催化还原NO性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60071-9
引用本文: 孙锦昌, 任翠涛, 赵明新, 田春雨, 迟姚玲, 赵田田, 王虹. Cu/Hβ催化剂NH3选择性催化还原NO性能研究[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60071-9
SUN Jin-chang, REN Cui-tao, ZHAO Ming-xin, TIAN Chun-yu, CHI Yao-ling, ZHAO Tian-tian, WANG Hong. Catalytic performance of Cu/Hβ catalysts for selective catalytic reduction of NO by NH3[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60071-9
Citation: SUN Jin-chang, REN Cui-tao, ZHAO Ming-xin, TIAN Chun-yu, CHI Yao-ling, ZHAO Tian-tian, WANG Hong. Catalytic performance of Cu/Hβ catalysts for selective catalytic reduction of NO by NH3[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60071-9

Cu/Hβ催化剂NH3选择性催化还原NO性能研究

doi: 10.1016/S1872-5813(22)60071-9
基金项目: 国家自然科学基金(U1662103,2167329)资助
详细信息
    通讯作者:

    E-mail: chiyaoling@bipt.edu.cn

    wanghong@bipt.edu.cn

  • 中图分类号: O643

Catalytic performance of Cu/Hβ catalysts for selective catalytic reduction of NO by NH3

Funds: The project was supported by the National Natural Science Foundation (U1662103,2167329)
  • 摘要: 采用浸渍法制备了以Hβ分子筛为载体负载氧化铜催化剂,考察了Cu负载量对催化剂NH3选择性催化还原NO反应(NH3-SCR)性能的影响,通过XRD、N2吸附-脱附、NH3-TPD、NO-TPD、H2-TPR、EDS和XPS等表征技术研究了催化剂的物理化学性质和SO2存在条件下催化剂活性降低的原因。结果表明,反应气体不含SO2,Cu负载量为3 %,即Cu(3)/Hβ催化剂有较高的反应活性,t95为169 ℃;反应气体含SO2,Cu负载量为2 %时,即Cu(2)/Hβ催化剂的反应活性较好,t95为225 ℃。反应前后催化剂的分析结果表明,SO2存在条件下催化剂活性降低的主要原因是在低温条件下,SO2与NH3反应生成的硫铵盐覆盖了催化剂活性中心。
  • 图  1  Cu(x)/Hβ(x=0、1、2、3、4)催化剂的XRD谱图

    Figure  1  XRD patterns of the Cu(x)/Hβ(x=0, 1, 2, 3, 4) catalysts

    图  2  Cu(x)/Hβ(x=0、1、2、3、4)催化剂的N2吸附-脱附等温曲线

    Figure  2  N2 adsorption and desorption isotherms of the Cu(x)/Hβ (x=0, 1, 2, 3, 4) catalysts

    图  3  Cu(x)/Hβ(x=0、1、2、3、4)催化剂的NH3-TPD谱图

    Figure  3  NH3-TPD profiles of the Cu(x)/Hβ (x=0, 1, 2, 3, 4) catalysts

    图  4  Cu(x)/Hβ(x=0、1、2、3、4)催化剂的NO-TPD谱图

    Figure  4  NO-TPD profiles of the Cu(x)/Hβ(x=0, 1, 2, 3, 4) catalysts

    图  5  Cu(x)/Hβ(x=1、2、3、4)催化剂的H2-TPR谱图

    Figure  5  H2-TPR profiles of the Cu(x)/Hβ(x=1, 2, 3, 4) catalysts

    图  6  Cu(x)/Hβ催化剂上NH3-SCR 脱硝反应温度与NO 转化率关系 (a) 反应体系中无SO2 (b) 反应体系中有SO2

    Figure  6  Relationship between NO conversion and temperature for the NH3-SCR reaction over the Cu(x)/Hβcatalysts (a) no SO2 in the reaction system, (b) with SO2 (300 μL/L) in the reaction system

    图  7  Cu(2)/Hβ催化剂反应前后的XRD谱图

    Figure  7  XRD patterns of the Cu(2)/Hβcatalysts before and after the reaction at different reaction temperatures

    图  8  Cu(2)/Hβ催化剂反应前后S 2p (a) 和N 1s (b) XPS谱图

    Figure  8  S 2p (a) and N 1s (b) XPS spectra of the Cu(2)/Hβ catalysts

    表  1  Cu(x)/Hβ(x=0、1、2、3、4)催化剂上N2脱附峰面积和温度

    Table  1  Area and temperature of N2 desorption peak over the Cu(x)/Hβ (x=0, 1, 2, 3, 4) catalysts

    samplesBET/
    (m2·g−1)
    smicro/
    (m2·g−1)
    sext/
    (m2·g−1)
    vtotal
    (cm3·g−1)
    vmicro/
    (cm3·g−1)
    vext/
    (cm3·g−1)
    5374161210.420.190.23
    Cu(1)/Hβ5114021090.400.180.22
    Cu(2)/Hβ476381950.370.170.20
    Cu(3)/Hβ474376980.370.170.20
    Cu(4)/Hβ425338870.340.150.19
    下载: 导出CSV

    表  2  Cu(x)/Hβ(x=0, 1, 2, 3, 4)催化剂上NH3脱附峰面积和温度

    Table  2  Area and temperature of NH3 desorption peak over the Cu(x)/Hβ (x=0, 1, 2, 3, 4) catalysts

    SampleArea of acid sites /(a.u.) (Temperature /℃)Total
    weak acidmediumstrong acidstrong acid
    3.02(173)4.26(231)3.68(369)10.96
    Cu(1)/Hβ2.05(169)2.42(214)2.16(325)6.63
    Cu(2)/Hβ2.72(169)2.87(212)2.34(296)7.93
    Cu(3)/Hβ2.74(167)2.90(206)2.83(295)8.47
    Cu(4)/Hβ2.30(175)2.84(225)2.47(351)7.61
    下载: 导出CSV

    表  3  Cu(x)/Hβ(x=0、1、2、3、4)催化剂上NO脱附峰面积和温度

    Table  3  Area and temperature of NO desorption peak over the Cu(x)/Hβ(x=0, 1, 2, 3, 4) catalysts

    PeakArea /a.u. (Temperature /℃)
    Cu(1)/HβCu(2)/HβCu(3)/HβCu(4)/Hβ
    10.59(164)0.92 (160)3.64 (161)3.16 (155)4.06(161)
    20.38(205)0.72(236)1.80 (231)1.55 (232)1.09(224)
    30.24(233)1.11 (300)1.28(334)
    40.76(375)
    Total1.211.645.445.827.19
    下载: 导出CSV

    表  4  Cu(x)/Hβ(x=1、2、3、4)催化剂上H2-TPR表征

    Table  4  H2-TPRresultsof the Cu(x)/Hβ (x=1, 2, 3, 4) catalysts

    PeakCu(1)/HβCu(2)/HβCu(3)/HβCu(4)/Hβ
    t/℃area/(a.u) (pct./%)t/℃area/(a.u) (pct./%)t/℃area/(a.u) (pct./%)t/℃area/(a.u) (pct./%)
    A2374.64 (20.0)2309.50 (23.0)22914.67 (27.8)
    B3082.03(42.3)3085.17 (22.3)30222.53 (54.5)27128.17 (53.2)
    C4135.13 (22.1)4006.11 (14.8)4017.01 (13.3)
    D5672.76(56.7)5198.23 (35.5)5253.18 (7.7)5273.01 (5.7)
    Total4.7923.1741.3252.85
    下载: 导出CSV

    表  5  Cu(2)/Hβ催化剂反应前后的电子能谱

    Table  5  Electron spectroscopy analysis results of the catalyst at different reaction temperatures

    SampleCu(2)/HβCu(2)/Hβ-100Cu(2)/Hβ-150Cu(2)/Hβ-200
    Sulfur/
    %
    03.11.90.6
    下载: 导出CSV
  • [1] 张文博, 陈佳玲, 郭立, 郑伟, 王光华, 郑申棵, 吴晓琴. 金属负载型分子筛催化剂的NH3-SCR机理研究进展[J]. 燃料化学学报,2021,49(9):1294−1315. doi: 10.1016/S1872-5813(21)60080-4

    ZHANG Wen-bo, CHEN Jia-ling, GUO Li, ZHENG Wei, WANG Guang-hua, ZHEN Sheng-ke, WU Xiao-qin. Research progress on NH3-SCR mechanism of metal-supported zeolite catalysts[J]. J Fuel Chem Technol,2021,49(9):1294−1315. doi: 10.1016/S1872-5813(21)60080-4
    [2] 张先龙, 胡晓芮, 刘仕雯, 杨祥瑾, 吴雪平, 王钧伟, 肖客松. 锰基累托石低温NH3-SCR催化剂的制备方法[J]. 环境化学,2022,41(3):1−9.

    ZHANG Xian-long, HU Xiao-rui, LIU Shi-wen, YANG Xiang-jing, WU Xue-ping, WANG Jun-wei, XIAO Ke-song. The preparation method of manganese-based rectorite low-temperature NH3-SCR catalyst[J]. Environ Chem,2022,41(3):1−9.
    [3] 汤常金, 孙敬方, 董林. 超低温(<150 ℃)SCR脱硝技术研究进展[J]. 化工学报,2020,71(11):4873−4884,5362.

    TANG Chang-jin, SUN Jing-fang, DONG Lin. Recent progress on elimination of NOx from flue gas via SCR technology under ultra-low temperatures (< 150 ℃)[J]. CIESC J,2020,71(11):4873−4884,5362.
    [4] 卞若愚, 安忠义, 李启超, 朱纯, 孙镇坤, 段伦博. O3-NH3协同活性焦脱硫脱硝的均相预反应特性研究[J]. 中国环境科学,2021,41(10):4476−4483. doi: 10.3969/j.issn.1000-6923.2021.10.002

    BIAN Ruo-yu, AN Zhong-yi, LI Qi-chao, ZHU Chun, SUN Zhen-kun, DUAN Lun-bo. Characteristics of simultaneous removal of NOxand SO2 by O3-NH3 synergy[J]. China Environ Sci,2021,41(10):4476−4483. doi: 10.3969/j.issn.1000-6923.2021.10.002
    [5] MA L, CHENG Y, CAVATAIO G, MCCABE R W, FU L, LI J. Characterization of commercial Cu-SSZ-13 and Cu-SAPO-34 catalysts with hydrothermal treatment for NH3-SCR of NOx in diesel exhaust[J]. Chem Eng J,2013,225:323−330. doi: 10.1016/j.cej.2013.03.078
    [6] 付金艳, 王振峰, 白心蕊, 崔梦壳, 武文斐. γ-Al2O3酸性修饰稀土尾矿NH3-SCR脱硝性能[J]. 中国环境科学,2020,40(9):3741−3747. doi: 10.3969/j.issn.1000-6923.2020.09.004

    FU Jin-yan, WANG Zhen-feng, BAI Xin-rui, CUI Men-kai, WU Wen-fei. Denitration performance of NH3-SCR from γ-Al2O3 acid modified rare earth tailings[J]. China Environ Sci,2020,40(9):3741−3747. doi: 10.3969/j.issn.1000-6923.2020.09.004
    [7] ZHAN S, ZHANG H, ZHANG Y, SHI Q, LI Y, LI X. Efficient NH3-SCR removal of NOx with highly ordered mesoporous WO3(CHI)-CeO2 at low temperatures[J]. Appl Catal B,2017,203:199−209. doi: 10.1016/j.apcatb.2016.10.010
    [8] LEE S M, PARK K H, Hong S C. MnOx/CeO2–TiO2 mixed oxide catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chem Eng J,2012,195−196:323−331.
    [9] LI Y, LI Y, WANG P, HU W, ZHANG S, SHI Q, ZHAN S. Low-temperature selective catalytic reduction of NOx with NH3 over MnFeOx nanorods[J]. Chem Eng J,2017,330:213−222. doi: 10.1016/j.cej.2017.07.018
    [10] ZHAO Z, YU R, ZHAO R, SHI C, GIES H, XIAO F-S, DE VOS D, YOKOI T, BAO X, KOLB U, FEYEN M, MCGUIRE R, MAURER S, MOINI A, MüLLER U, ZHANG W. Cu-exchanged Al-rich SSZ-13 zeolite from organotemplate-free synthesis as NH3-SCR catalyst: Effects of Na + ions on the activity and hydrothermal stability[J]. Appl Catal B: Environ,2017,217:421−428. doi: 10.1016/j.apcatb.2017.06.013
    [11] ZHAO H, ZHAO Y, MA Y, YONG X, WEI M, CHEN H, ZHANG C, LI Y. Enhanced hydrothermal stability of a Cu-SSZ-13 catalyst for the selective reduction of NOx by NH3 synthesized with SAPO-34 micro-crystallite as seed[J]. J Catal,2019,377:218−223. doi: 10.1016/j.jcat.2019.07.023
    [12] YUE Y, LIU B, QIN P, LV N, WANG T, BI X, ZHU H, YUAN P, BAI Z, CUI Q, BAO X. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates[J]. Cheml Eng J,2020,398:125515. doi: 10.1016/j.cej.2020.125515
    [13] 马子然, 王宝冬, 路光杰, 肖雨亭, 杨建辉, 陆金丰, 李歌, 周佳丽, 王红妍, 赵春林. 粉煤灰基SAPO-34分子筛脱硝催化剂的合成及其脱硝性能[J]. 化工进展,2020,39(10):4051−4060. doi: 10.16085/j.issn.1000-6613.2020-0011

    MA Zhi-ran, WANG Bao-dong, LU Guang-jie, XIAO Yue-ting, YANG Jian-hui, LU Jin-feng, LI Ge, ZHOU Jia-li, WANG Hong-yan, ZHAO Chun-lin. Preparation and performance of SAPO-34 based SCR catalyst derived from fly ash[J]. Chem Ind Eng Prog,2020,39(10):4051−4060. doi: 10.16085/j.issn.1000-6613.2020-0011
    [14] LI Q J, PEIMM, YAOP, XU S, XU S H, LIUS, XU HD, DAN Y, CHENYQ. Determining hydrothermal deacyivation mechanisms on Cu/SAPO-34 NH3-SCR catalysts at low- and hing-reaction regions: establishing roles of different reaction sites[J]. Rare Metals,2022,41(6):1899−1910. doi: 10.1007/s12598-021-01933-8
    [15] 其其格吉日嘎拉, 李晨曦, 叶青, 程锦, 程水源, 康天放. La-Cu/ZSM-5催化剂NH3选择性催化还原NO的性能[J]. 环境化学,2020,39(9):2567−2575. doi: 10.7524/j.issn.0254-6108.2019062503

    MUNKHJARGAL TSETSEGJARGAL, LI Chen-xi, YE Qing, CHENG Jin, CHENG Shui-yuan, KANG Tian-fang. La-Cu/ZSM-5 catalysts electively reduced NO by NH3-SCR[J]. Environ Chem,2020,39(9):2567−2575. doi: 10.7524/j.issn.0254-6108.2019062503
    [16] 邱爽, 肖永厚, 刘建辉, 贺高红. 一步法制备高活性NH3-SCR催化剂Cu-SAPO-34: Si含量的影响[J]. 化工学报,2021,72(5):2578−2585.

    QIU Shuang, XIAO Yong-hou, LIU Jian-hui, HE Gao-hong. Enhanced NH3-SCR performance over Cu-SAPO-34: Si prepared by one-step synthesis: effect of Si contents[J]. CIESC J,2021,72(5):2578−2585.
    [17] IMAI H, HAYASHIDA N, YOKOI T, TATSUMI T. Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents[J]. Micropor Mesopor Mat,2014,196:341−348. doi: 10.1016/j.micromeso.2014.05.043
    [18] XIE B, ZHANG H, YANG C, LIU S, REN L, ZHANG L, MENG X, YILMAZ B, MULLER U, XIAO F S. Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates[J]. Chem Commun,2011,47(13):3945−3947. doi: 10.1039/c0cc05414c
    [19] LIU Q, LIU Z, WU W. Effect of V2O5 additive on simultaneous SO2 and NO removal from flue gas over a monolithic cordierite-based CuO/Al2O3 catalyst[J]. Catal Today,2009,147:S285−S289. doi: 10.1016/j.cattod.2009.07.013
    [20] GAO F, WALTER E D, KARP E M, LUO J, TONKYN R G, KWAK J H, SZANYI J, PEDEN C H F. Structure-activity relationships in NH3-SCR over Cu-SSZ-13 as probed by reaction kinetics and EPR studies[J]. J Catal,2013,300:20−29. doi: 10.1016/j.jcat.2012.12.020
    [21] 任翠涛, 胡颖智, 魏浩宇, 李滨, 王虹, 丁福臣, 李翠清, 宋永吉. SO2存在条件下M/REY催化剂NH3选择性还原NO性能研究[J]. 燃料化学学报,2013,41(10):1241−1247.

    REN Cui-tao, HU Ying-zhi, WEI Hao-yu, LI Bin, WANG Hong, DING Fu-chen, LI Cui-qing, SONG Yong-ji. NH3 selective catalytic reduction of NO over M/REY catalysts in presence of SO2[J]. J Fuel Chem Technol,2013,41(10):1241−1247.
    [22] SHEVLIN S. Looking deeper into zeolites[J]. Nat Mater,2020,19(10):1038−1039. doi: 10.1038/s41563-020-0787-4
    [23] HINCAPIE B O, GARCES L J, ZHANG Q, SACCO A, SUIB S L. Synthesis of mordenite nanocrystals[J]. Micropor Mesopor Mat,2004,67(1):19−26. doi: 10.1016/j.micromeso.2003.09.026
    [24] RAVI M, SUSHKEVICH V L, VAN B J A. Towards a better understanding of Lewis acidic aluminium in zeolites[J]. Nat Mater,2020,19(10):1047−1056. doi: 10.1038/s41563-020-0751-3
    [25] SU W, LI Z, PENG Y, LI J. Correlation of the changes in the framework and active Cu sites for typical Cu/CHA zeolites (SSZ-13 and SAPO-34) during hydrothermal aging[J]. Phys Chem Chem Phys,2015,17(43):29142−29149. doi: 10.1039/C5CP05128B
    [26] XU M, WANG J, YU T, WANG J, SHEN M. New insight into Cu/SAPO-34 preparation procedure: Impact of NH4-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH3-SCR catalysts[J]. Appl Catal B:Environ,2018,220:161−170. doi: 10.1016/j.apcatb.2017.08.031
    [27] LIU B, LV N G, WANG C, ZHANG H W, YUE Y Y, JINGDONG XU J D, BI X T, BAO X J. Redistributing Cu species in Cu-SSZ-13 zeolite as NH3-SCR catalyst via a simple ion-exchange[J]. Chin J Chem Eng,2022,41:329−341. doi: 10.1016/j.cjche.2021.10.027
    [28] WANG H M, LI W, XU S Y, LIU M, HAO J M, NING P, QIULIN ZHANG Q L. Insights into the impact of lanthanum on hydrothermal-induced migration and transformation of copper species in Cu/SAPO-34 catalyst for NH3-SCR[J]. Mol Catal,2021,515:111914. doi: 10.1016/j.mcat.2021.111914
    [29] MING S J, PANG L, CHEN Z, GUO Y B, GUO L, LIU Q, LIU P, DONG Y H, ZHANG S T, LI T. Insight into SO2 poisoning over Cu-SAPO-18 used for NH3-SCR[J]. Micropor Mesopor Mat,2020,303:110294. doi: 10.1016/j.micromeso.2020.110294
    [30] 白书立, 张晓玉, 薛瑶佳, 李换英, 郏建波. 碳化硅负载氧化铜催化剂低温NH3选择性催化还原NOx的性能[J]. 燃料化学学报,2020,48(6):723−727. doi: 10.3969/j.issn.0253-2409.2020.06.011

    BAI Shu-li L, ZHANG Xiao-yu, XUE Yao-jia, LI Huan-ying, JIA Jian-bo. Silicon carbon-supported copper oxide catalysts for the selective catalytic reduction of NOx with NH3 at low temperature[J]. J Fuel Chem Technol,2020,48(6):723−727. doi: 10.3969/j.issn.0253-2409.2020.06.011
    [31] YE D, REN X, QU R, LIU S, ZHENG C, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. Mol Catal,2019,462:10−18. doi: 10.1016/j.mcat.2018.10.007
    [32] 焦坤灵, 赵阳国, 武文斐, 王振峰, 龚志军. SO2对稀土精矿催化剂NH3-SCR脱硝催化性能的影响[J]. 化工学报,2019,70(12):4645−4653.

    JIAO Kun-ling, ZHAO Yang-guo, WU Wen-fei, WANG Zhen-feng, GONG Zhi-jun. Effect of SO2 on catalytic performance of rare earth concentrate catalyst for NH3-SCR denitrification[J]. CIESC J,2019,70(12):4645−4653.
    [33] 魏永林, 陈红萍, 侯欣辛, 杨旭, 李泽清. Fe-Mn/TiO2低温NH3-SCR脱硝催化剂的SO2中毒机理[J]. 功能材料,2021,52(4):4132−4139,4146. doi: 10.3969/j.issn.1001-9731.2021.04.020

    WEI Yong-lin, CHEN Hong-ping, HOU Xin-xin, YANG Xu, LI Ze-qing. SO2 poisoning mechanism of Fe-Mn/TiO2 catalyst for low-temperature NH3-SCR deniteation[J]. J Funct Mater,2021,52(4):4132−4139,4146. doi: 10.3969/j.issn.1001-9731.2021.04.020
    [34] 陈潇雪, 宋敏, 孟凡跃, 卫月星. FexMnCe1-AC低温SCR催化剂SO2中毒机理研究[J]. 化工学报,2019,70(8):3000−3010.

    CHEN Xiao-xue, SONG Min, MENG Fan-yue, WEI Yue-xing. Mechanism study on SO2 poisoning of FexMnCe1-AC catalyst for low-temperature SCR[J]. CIESC J,2019,70(8):3000−3010.
    [35] 肖雨亭, 吴鹏, 王玲, 张亚平. Ce改性Fe-Mn/TiO2低温SCR脱硝催化剂硫中毒机理[J]. 化工环保,2019,39(4):431−436. doi: 10.3969/j.issn.1006-1878.2019.04.011

    XIAO Yu-ting, WU Peng, WANG Ling, ZHANG Ya-ping. Mechanism of sulfur poisoning on low-temperature SCR denitration catalyst Ce-modified Fe-Mn/TiO2[J]. Environ Prot Chem Ind,2019,39(4):431−436. doi: 10.3969/j.issn.1006-1878.2019.04.011
    [36] ROMANO E J, SCHULZ K H. A XPS investigation of SO2 adsorption on ceria-zirconia mixed-metal oxides[J]. Appl Surf Sci,2005,246(1−3):262−270.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  15
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-23
  • 录用日期:  2022-10-17
  • 修回日期:  2022-10-09
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回