留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Preparation and characterization of low-temperature coal tar toughened phenolic foams

CHENG Jin-yuan LI Zhan-ku YAN Hong-lei LEI Zhi-ping YAN Jing-chong REN Shi-biao WANG Zhi-cai KANG Shi-gang SHUI Heng-fu

程锦远, 李占库, 闫洪雷, 雷智平, 颜井冲, 任世彪, 王知彩, 康士刚, 水恒福. 低温煤焦油增韧酚醛泡沫的制备及性能表征[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60072-0
引用本文: 程锦远, 李占库, 闫洪雷, 雷智平, 颜井冲, 任世彪, 王知彩, 康士刚, 水恒福. 低温煤焦油增韧酚醛泡沫的制备及性能表征[J]. 燃料化学学报. doi: 10.1016/S1872-5813(22)60072-0
CHENG Jin-yuan, LI Zhan-ku, YAN Hong-lei, LEI Zhi-ping, YAN Jing-chong, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Preparation and characterization of low-temperature coal tar toughened phenolic foams[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60072-0
Citation: CHENG Jin-yuan, LI Zhan-ku, YAN Hong-lei, LEI Zhi-ping, YAN Jing-chong, REN Shi-biao, WANG Zhi-cai, KANG Shi-gang, SHUI Heng-fu. Preparation and characterization of low-temperature coal tar toughened phenolic foams[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(22)60072-0

低温煤焦油增韧酚醛泡沫的制备及性能表征

doi: 10.1016/S1872-5813(22)60072-0
详细信息
  • 中图分类号: TQ530

Preparation and characterization of low-temperature coal tar toughened phenolic foams

More Information
  • 摘要: 低温煤焦油的高效利用对煤热解或炼焦十分重要。由于低温煤焦油中含有大量不同活性位的酚类化合物,其苯酚替代率(40%)显著高于高温煤焦油及其馏分。本文以低温煤焦油为原料,部分替代石油基苯酚制备煤焦油基酚醛泡沫(CPF),对CPFs的化学结构、表观形貌、压缩强度、粉化率、热稳定性、阻燃性能和隔热性能进行了表征。结果表明,CPFs与常规酚醛泡沫的化学结构相似。与常规酚醛泡沫相比,30%CPF和40%CPF的压缩强度分别增加了18.3%和55.9%;且由于脂肪结构如烷基酚的引入,使得泡沫的韧性显著提高,其粉化率分别下降了22.9%和50.8%。此外,CPFs的在低温下的热稳定性增加。尽管CPFs的极限氧指数下降,导热系数增加,但依然保持较好的阻燃和隔热性能。这说明低温煤焦油能够高比例地替代苯酚制备出性能优良的酚醛泡沫,为低温煤焦油的高值化利用提供了新的思路。
  • Figure  1  Distributions of group components in low-temperature coal tar

    Figure  2  Possible ways of some components in coal tar participating in polymerization of phenolic resins

    Figure  3  Micrographs (up, 50 × ) and photographs (down) of PF and CPFs

    Figure  4  FTIR spectra of PF and CPFs

    Figure  5  Stress-strain curves of PF and CPFs

    Figure  6  TG (a) and DTG (b) curves of PF and CPFs

    Figure  7  LOI and thermal conductivity of PF and CPFs

    Table  1  Formulations of PR and CPRs with different substitution rates

    Substitution rate (%)Low-temperature coal tar (g)Phenol (g)37% aqueous formaldehyde (g)15% aqueous NaOH (mL)
    005077.5415
    1054571.3415
    20104065.1315
    30153558.9315
    40203052.7315
    下载: 导出CSV

    Table  2  Basic properties of PR and CPRs

    ResinPR10%CPR20%CPR30%CPR40%CPR
    Viscosity (Pa·s)4.16.910.420.748.7
    Solid content (%)79.277.776.675.474.3
    下载: 导出CSV

    Table  3  Arenes with RC > 0.2% detected in low-temperature coal tar by GC/MS

    ArenesRCArenesRC
    naphthalene0.322-methyl-9H-fluorene0.63
    5H-benzo[7]annulene0.602,6-dimethylbiphenyl0.49
    2-methylnaphthalene0.362,4,6-trimethylbiphenyl0.67
    1,2,4-trimethyl-5-(prop-1-en-2-yl)benzene0.213,3',4,4'-tetramethylbiphenyl0.22
    2,6-dimethylnaphthalene0.313,4-diethylbiphenyl0.70
    1,7-dimethylnaphthalene0.751a,9b-dihydro-1H-cyclopropa[l]phenanthrene1.16
    3-ethyl-1,2,4,5-tetramethylbenzene0.432,3-dimethylphenanthrene0.75
    1,1,4,5,6-pentamethylindane0.29pyrene0.26
    4,6,8-trimethylazulene0.842,3,5-trimethylphenanthrene1.16
    1,6,7-trimethylnaphthalene0.851-methylpyrene0.46
    phenalene0.292-isopropyl-10-methylphenanthrene1.22
    1-allylnaphthalene0.281-methyl-4-((4-propylphenyl)ethynyl)benzene0.21
    4-methylbiphenyl0.214,8-dimethyl-6-phenylazulene0.30
    3,4'-dimethylbiphenyl0.421,3-dimethyl-8-isopropyl-phenanthrene0.29
    6-isopropyl-1,4-dimethylnaphthalene0.25tetracene0.22
    RC: relative content.
    下载: 导出CSV

    Table  4  Other oxygenates with RC > 0.2% detected in low-temperature coal tar by GC/MS

    Other oxygenatesRCOther oxygenatesRC
    2-acetyl-2-carene0.211-heneicosyl formate0.24
    2-methylindan-1-ol0.333-hydroxy-estra-1,3,5(10),9(11)-tetraen-17-one0.40
    2,3,4,5-tetramethylbenzaldehyde0.201-heneicosanol0.52
    2-methyl-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-enal0.31methyl 3-(3-methylbut-2-en-1-yl)-1,4-dioxo-1,4-dihydronaphthalene-2-carboxylate0.31
    1,2a,3,4,5,7,8,9-octahydro-2H-benzo[cd]pyren-5-ol0.3011-methyl-10,11-dihydrotetraphene-10,11-diol0.29
    2,3-diphenylcycloprop-2-en-1-one0.251,2-dimethylnaphtho[2,1-b]furan0.26
    4,6,8-trimethyl-1-azulenecarbaldehyde0.45
    下载: 导出CSV

    Table  5  Phenols detected in low-temperature coal tar by GC/MS

    PhenolsRCPhenolsRC
    with 0 active site2,3,5-trimethylphenol0.14
    6,6'-methylenebis(2-(tert-butyl)-4-methylphenol)0.502,6-dimethyl-1,4-benzenediol0.35
    with 1 active sites2,5-dimethyl-1,3-benzenediol0.04
    2,4-xylenol1.482-(2-methylallyl)phenol0.98
    2,3,6-trimethylphenol0.164,5-dimethyl-1,3-benzenediol0.08
    2-allyl-6-cresol0.016-methyl-4-indanol0.27
    2-ethyl-6-cresol0.345,8-dihydronaphthalen-1-ol0.16
    3-methylcatechol0.30[1,1'-biphenyl]-2-ol0.03
    2-ethyl-4-cresol1.26naphthalen-1-ol0.61
    2,3,6-trimethylphenol0.239H-fluoren-2-ol0.80
    2-ethyl-4,5-xyenol0.235,7-dimethylnaphthalen-1-ol0.08
    6-propyl-2-cresol0.106,7-dimethylnaphthalen-1-ol1.74
    4-methyl-2-(pent-3-en-2-yl)phenol0.172-styrylphenol0.11
    2-methylnaphthalen-1-ol0.184-(cyclohepta-2,4,6-trien-1-yl)phenol0.17
    3,6-dimethyl-2-(2-methylbut-3-en-2-yl)phenol0.074-benzylphenol0.04
    2,5,8-trimethylnaphthalen-1-ol0.28dibenzo[b,d]furan-2-ol0.19
    1,2,3,4-tetrahydrophenanthren-9-ol0.284-styrylphenol0.21
    with 2 active sitesphenanthren-2-ol0.22
    2-ethylphenol0.221-phenyl-1H-inden-4-ol0.54
    2,5-xyenol0.44with 3 active sites
    3,4-xyenol0.39phenol0.78
    catechol0.203-cresol2.84
    2-ethyl-5-cresol0.213-ethylphenol1.52
    3,4,5-trimethylphenol0.41orcinol0.09
    4-methylcatechol0.313,5-diethylphenol0.50
    thymol0.09
    下载: 导出CSV

    Table  6  Basic characteristics of PF and CPFs

    FoamsDensity (kg·m−3)Compressive strength (MPa)Pulverization rate (%)Thermal conductivity (W·m−1·K−1)
    PF50.80.17211.80.0391
    10%CPF50.20.10711.60.0395
    20%CPF62.40.1669.10.0414
    30%CPF93.00.2685.80.0443
    40%CPF77.30.2039.10.0432
    下载: 导出CSV

    Table  7  TG and DTG analysis of PF and CPFs

    SampleT−5% (°C)Tmax (°C)Residual
    mass (%)
    step IIstep III
    PF90.9288.1451.540.9
    10%CPF96.4285.2450.439.7
    20%CPF106.2284.8451.139.6
    30%CPF103.0286.2458.340.6
    40%CPF123.6291.4453.243.1
    下载: 导出CSV
  • [1] HUANG Y, FENG J, LIANG C H, HUANG P, ZHANG X W, XIE Q, LI W Y. Co-production of naphthenic oil and phenolic compounds from medium- and low-temperature coal tar[J]. Ind Eng Chem Res,2021,60(16):5890−5902. doi: 10.1021/acs.iecr.1c00390
    [2] YAO Q, LI Y, TANG X, GAO J, WANG R, ZHANG Y, SUN M, MA X. Separation of petroleum ether extracted residue of low temperature coal tar by chromatography column and structural feature of fractions by TG-FTIR and PY-GC/MS[J]. Fuel,2019,245:122−130. doi: 10.1016/j.fuel.2019.02.074
    [3] XIE K. Reviews of clean coal conversion technology in China: Situations & challenges[J]. Chin J Chem Eng,2021,35:62−69. doi: 10.1016/j.cjche.2021.04.004
    [4] LIU J, AHMAD F, ZHANG Q, LIANG L, HUANG W, PENG Z, YUAN Q, XIANG X. Interactive tools to assist convenient group-type identification and comparison of low-temperature coal tar using GC × GC–MS[J]. Fuel,2020,278:118314. doi: 10.1016/j.fuel.2020.118314
    [5] GUO X H, WEI X Y, HU L, LIU X J, CHEN M X, XU M L, ZONG Z M. Molecular characterization of a middle/low-temperature coal tar by multiple mass spectrometries[J]. Fuel,2021,306:121435. doi: 10.1016/j.fuel.2021.121435
    [6] GANG Y, PAN L, NIU M, ZHANG X, LI D, LI W. Catalytic hydrogenation of Low temperature coal tar into jet fuel by using two-reactors system[J]. J Anal Appl Pyrolysis,2018,134:202−208. doi: 10.1016/j.jaap.2018.06.009
    [7] ZHANG X Q, KANG Y H, GAO J, XIONG L, GAO Y, CHEN T, LIU G H, WANG A M, WEI X Y, ZONG Z M, BAI H C. Effective hydroconversion of heteroatom-containing organic species from the extraction of low-temperature coal tar to cycloalkanes over a Y/Beta composite zeolite supported nickel nanoparticles[J]. Fuel,2022,321:124062. doi: 10.1016/j.fuel.2022.124062
    [8] GAI H, QIAO L, ZHONG C, ZHANG X, XIAO M, SONG H. Designing ionic liquids with dual lewis basic sites to efficiently separate phenolic compounds from low-temperature coal tar[J]. ACS Sustain Chem Eng,2018,6(8):10841−10850. doi: 10.1021/acssuschemeng.8b02119
    [9] GAI H, QIAO L, ZHONG C, ZHANG X, XIAO M, SONG H. A solvent based separation method for phenolic compounds from low-temperature coal tar[J]. J Clean Prod,2019,223:1−11. doi: 10.1016/j.jclepro.2019.03.102
    [10] LI Y, LUO H A, AI Q, YOU K, ZHAO F, XIAO W. Efficient separation of phenols from coal tar with aqueous solution of amines by liquid-liquid extraction[J]. Chin J Chem Eng,2021,35:180−188. doi: 10.1016/j.cjche.2021.01.008
    [11] ZHANG Z, LOU B, ZHAO N, YU E, WANG Z, DU H, CHEN Z, LIU D. Co-carbonization behavior of the blended heavy oil and low temperature coal tar for the preparation of needle coke[J]. Fuel,2021,302:121139. doi: 10.1016/j.fuel.2021.121139
    [12] TIAN Y, HUANG Y, YU X, GAO F, GAO S, WANG F, LI D, XU X, CUI L, FAN X, DONG H, LIU J. Co-carbonization of medium- and low-temperature coal tar pitch and coal-based hydrogenated diesel oil prepare mesophase pitch for needle coke precursor[J]. Adv Eng Mater,2021,23(10):2001523. doi: 10.1002/adem.202001523
    [13] PYSHYEV S, DEMCHUK Y, POLIUZHYN I, KOCHUBEI V. Obtaining and use adhesive promoters to bitumen from the phenolic fraction of coal tar[J]. Inter J of Adhes Adhes,2022,118:103191. doi: 10.1016/j.ijadhadh.2022.103191
    [14] HUANG R, YUAN X, YAN L, HAN L, BAO W, CHANG L, LIU J, WANG J, OK Y S. Carbon precursors in coal tar: Extraction and preparation of carbon materials[J]. Sci Total Environ,2021,788:147697. doi: 10.1016/j.scitotenv.2021.147697
    [15] K. S P, S. S M, T. S, Phenolic based foams [M]. Springer, 2022: 1-3.
    [16] MOUGEL C, GARNIER T, CASSAGNAU P, SINTES-ZYDOWICZ N. Phenolic foams: A review of mechanical properties, fire resistance and new trends in phenol substitution[J]. Polymer,2019,164:86−117. doi: 10.1016/j.polymer.2018.12.050
    [17] XU Y, GUO L, ZHANG H, ZHAI H, REN H. Research status, industrial application demand and prospects of phenolic resin[J]. RSC Adv,2019,9(50):28924−28935. doi: 10.1039/C9RA06487G
    [18] ZHOU M, SHI H, LI C, SHENG X, SUN Y, HOU M, NIU M, PAN X. Depolymerization and activation of alkali lignin by solid acid-catalyzed phenolation for preparation of lignin-based phenolic foams[J]. Ind Eng Chem Res,2020,59(32):14296−14305. doi: 10.1021/acs.iecr.0c01753
    [19] LI B, YUAN Z, SCHMIDT J, XU C. New foaming formulations for production of bio-phenol formaldehyde foams using raw kraft lignin[J]. Eur Polym J,2019,111:1−10. doi: 10.1016/j.eurpolymj.2018.12.011
    [20] GAO C, LI M, ZHU C, HU Y, SHEN T, LI M, JI X, LYU G, ZHUANG W. One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation[J]. Compos Part B:Eng,2021,205:108530. doi: 10.1016/j.compositesb.2020.108530
    [21] GAO Z, LANG X, CHEN S, ZHAO C. Mini-review on the synthesis of lignin-based phenolic resin[J]. Energy Fuels,2021,35(22):18385−18395. doi: 10.1021/acs.energyfuels.1c03177
    [22] ISSAOUI H, DE HOYOS-MARTINEZ P L, PELLERIN V, DOURGES M-A, DELEUZE H, BOURBIGO S, CHARRIER-EL BOUHTOURY F. Effect of catalysts and curing temperature on the properties of biosourced phenolic foams[J]. ACS Sustain Chem Eng,2021,9(18):6209−6223. doi: 10.1021/acssuschemeng.0c08234
    [23] CHEN S, XIN Y, ZHAO C. Multispectroscopic analysis in the synthesis of lignin-based biophenolic resins[J]. ACS Sustain Chem Eng,2021,9(46):15653−15660. doi: 10.1021/acssuschemeng.1c06135
    [24] CHENG J Y, LI Z K, YAN H L, LEI Z P, YAN J C, REN S B, WANG Z C, KANG S G, SHUI H F. Preparation and performance of high-temperature coal tar toughened phenolic foams[J]. J Fuel Chem Technol,2022,50(5):530−537.
    [25] YU Y, WANG Y, XU P, CHANG J. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials (Basel),2018,11(11):2228. doi: 10.3390/ma11112228
    [26] LI B, WANG Y, MAHMOOD N, YUAN Z, SCHMIDT J, XU C. Preparation of bio-based phenol formaldehyde foams using depolymerized hydrolysis lignin[J]. Ind Crop Prod,2017,97:409−416. doi: 10.1016/j.indcrop.2016.12.063
    [27] LI Z K, WANG H T, YAN H L, YAN J C, LEI Z P, REN S B, WANG Z C, KANG S G, SHUI H F. Catalytic ethanolysis of Xilinguole lignite over layered and mesoporous metal oxide composites to platform chemicals[J]. Fuel,2021,287:119560. doi: 10.1016/j.fuel.2020.119560
    [28] SUN M, WANG L, ZHONG J, YAO Q, CHEN H, JIAO L, HAO Q, MA X. Chemical modification with aldehydes on the reduction of toxic PAHs derived from low temperature coal tar pitch[J]. J Anal Appl Pyrolysis,2020,148:104822. doi: 10.1016/j.jaap.2020.104822
    [29] YU Y, WANG Y, XU P, CHANG J. Preparation and characterization of phenolic foam modified with bio-oil[J]. Materials (Basel),2018,11(11):2228. doi: 10.3390/ma11112228
    [30] WANG G, LIU X, ZHANG J, SUI W, JANG J, SI C. One-pot lignin depolymerization and activation by solid acid catalytic phenolation for lightweight phenolic foam preparation[J]. Ind Crop Prod,2018,124:216−225. doi: 10.1016/j.indcrop.2018.07.080
    [31] SONG F, JIA P, BO C, REN X, HU L, ZHOU Y. The mechanical and flame retardant characteristics of lignin-based phenolic foams reinforced with MWCNTs by in-situ polymerization[J]. J Disper Sci Technol,2020,42(7):1042−1051.
    [32] LI Q, CHEN L, LI X, ZHANG J, ZHENG K, ZHANG X, TIAN X. Effect of nano-titanium nitride on thermal insulating and flame-retardant performances of phenolic foam[J]. J Appl Poly Sci,2016,133(32):43765.
  • 加载中
图(7) / 表(7)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-06
  • 录用日期:  2022-10-25
  • 修回日期:  2022-10-22
  • 网络出版日期:  2022-11-16

目录

    /

    返回文章
    返回