留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Char structure evolution and behaviors of sodium species during catalytic gasification of sodium-rich direct coal liquefaction residue under CO2 atmosphere

LI Pei ZHU Chao-chao HAN Lu LI Xiao FENG Xiao-bo YAO Qin YU Shi MENG Xian-liang WANG Peng WEI Shuai

李佩, 朱超超, 韩露, 李晓, 冯晓博, 姚钦, 俞时, 孟献梁, 王鹏, 卫帅. 富钠液化残渣CO2气化过程煤焦结构演化及钠赋存形态迁移规律[J]. 燃料化学学报(中英文), 2023, 51(5): 598-607. doi: 10.1016/S1872-5813(22)60077-X
引用本文: 李佩, 朱超超, 韩露, 李晓, 冯晓博, 姚钦, 俞时, 孟献梁, 王鹏, 卫帅. 富钠液化残渣CO2气化过程煤焦结构演化及钠赋存形态迁移规律[J]. 燃料化学学报(中英文), 2023, 51(5): 598-607. doi: 10.1016/S1872-5813(22)60077-X
LI Pei, ZHU Chao-chao, HAN Lu, LI Xiao, FENG Xiao-bo, YAO Qin, YU Shi, MENG Xian-liang, WANG Peng, WEI Shuai. Char structure evolution and behaviors of sodium species during catalytic gasification of sodium-rich direct coal liquefaction residue under CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 598-607. doi: 10.1016/S1872-5813(22)60077-X
Citation: LI Pei, ZHU Chao-chao, HAN Lu, LI Xiao, FENG Xiao-bo, YAO Qin, YU Shi, MENG Xian-liang, WANG Peng, WEI Shuai. Char structure evolution and behaviors of sodium species during catalytic gasification of sodium-rich direct coal liquefaction residue under CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 598-607. doi: 10.1016/S1872-5813(22)60077-X

富钠液化残渣CO2气化过程煤焦结构演化及钠赋存形态迁移规律

doi: 10.1016/S1872-5813(22)60077-X
详细信息
  • 中图分类号: TQ541

Char structure evolution and behaviors of sodium species during catalytic gasification of sodium-rich direct coal liquefaction residue under CO2 atmosphere

Funds: The project was supported by National Key Research and Development Program of China (2022YFC2905900), Xuzhou Science and Technology Plan Project (KC20190), the National Natural Science Foundation of China (21903087, 22201243), and Experimental technology research and development project of China University of Mining and Technology (S2021Y006)
More Information
  • 摘要: 本研究采用N2吸附-脱附、FT-IR、XRD、SEM和Raman分析,考察了富钠液化残渣CO2气化过程煤焦结构演化和钠赋存形态变迁规律。实验结果表明,富钠液化残渣钠离子高温下易诱导液化残渣孔结构发生变化,拓展了介孔结构,介孔体积由0.05 cm3/g增加至最大0.16 cm3/g。随气化反应进行,煤焦中相继出现不同晶体化合物,XRD分析显示多数晶体矿物质为含钙矿物质,没有明显含钠矿物质的衍射峰,是钠离子高温下易挥发及含钠化合物晶体存在缺陷所致。与含钠矿物质相比,含钙矿物质更易与液化残渣中铝硅酸盐反应,从而使含钠矿物质气化过程保持了催化活性。煤焦(GR + VL + VR)/D的比率先升高后降低,分别与芳香族的解离及小芳香环结构重排成大芳香环结构有关。此外,钠离子释放率与气化反应时间密切相关,液化残渣中大部分钠离子在气化初期挥发至气相,与负载水溶性钠盐液化残渣相比,富钠液化残渣钠离子高温释放率较低。
  • FIG. 2289.  FIG. 2289.

    FIG. 2289.  FIG. 2289.

    Figure  1  Diagram of fixed-bed reactor

    1-Control panel, 2-Balance, 3-Heating furnace, 4-Quartz tube, 5-Condenser, 6-Tar collecting plant

    Figure  2  Pore size distribution of chars obtained at different gasification time

    Figure  3  SEM images of Char-25 and the colour mapping of sodium species

    Figure  4  XRD patterns of chars obtained at different time

    Figure  5  FT-IR spectra of chars obtained at different time

    Figure  6  Raman spectra of chars obtained at different time

    Figure  7  Deconvolution of Raman spectra for zone 1800–800 cm–1

    Figure  8  Release ratio of sodium species during gasification process

    Figure  9  XRD patterns of DCLR and corresponding chars

    Figure  10  FT-IR spectra of Char-1, Char-2, and Char-3

    Figure  11  Raman spectra of gasification chars (a) and typical deconvolution for zone 1800–800 cm–1 (b), (c), (d)

    Table  1  Pore characteristics of chars obtained at different gasification time

    Samplevmic/(cm3·g–1)vmes/(cm3·g–1)SBET/(m2·g–1)
    Char-50.040.05287.73
    Char-150.050.05322.53
    Char-250.050.16336.85
    Char-350.050.11266.51
    Char-450.040.07224.20
    Char-550.030.05148.20
    下载: 导出CSV

    Table  2  Carbon conversion versus gasification time

    Gasification time/min51525354555
    x/%44.8248.1259.3167.4979.3883.30
    下载: 导出CSV

    Table  3  Ultimate analysis of DCLR and chars

    SampleUltimate analysis wdaf/%
    CHNOaS
    Char-5 79.52 2.55 0.74 15.46 1.73
    Char-15 83.11 1.71 1.03 12.67 1.50
    Char-25 80.95 1.94 0.77 15.29 1.05
    Char-35 78.33 1.53 0.94 18.37 0.80
    Char-45 74.73 1.52 0.64 22.02 1.09
    Char-55 70.54 1.25 0.66 27.14 1.08
    Char-1 75.80 1.87 0.76 20.54 1.04
    Char-2 89.03 1.73 0.83 7.35 0.66
    Char-3 78.02 2.15 0.88 18.36 0.60
    a: by difference
    下载: 导出CSV

    Table  4  Summary of band assignment [27]

    Band nameBand position/cm–1Description
    GL 1700 carbonyl group C=O
    G 1590 graphite $ {{E}}_{2\mathrm{g}}^{2} $; aromatic ring quadrant breathing; alkene C=C
    GR 1540 aromatics with 3–5 rings; amorphous carbon structures
    VL 1465 methylene or methyl; semi-circle breathing of aromatic rings; amorphous carbon structures
    VR 1380 methyl group; semi-circle breathing of aromatic rings; amorphous carbon structures
    D 1300 D band on highly ordered carbonaceous materials; C–C between aromatic rings and aromatics with not less than 6 rings
    S 1230 aryl-alkyl ether; para-aromatics
    SL 1185 Caromatic–Calkyl; aromatic (aliphatic) ethers; C–C on hydro-aromatic rings; hexagonal diamond carbon sp3; C–H on aromatic rings
    SR 1060 C–H on aromatic rings; benzene (ortho-di-substituted) ring
    R 960–800 C–C on alkanes and cyclic alkanes; C–H on aromatic rings
    下载: 导出CSV

    Table  5  Parameters of Raman peak fitting curve

    AssignmentChar-5Char-15Char-25Char-35Char-45Char-55Char-1Char-2Char-3
    Total area ( × 105) 1.56 1.63 2.08 2.26 3.29 4.91 5.70 4.18 4.95
    (GR + VL + VR)/D 0.87 1.56 1.70 1.52 1.35 1.37 1.23 1.51 1.06
    GR/D 0.20 0.28 0.22 0.22 0.26 0.31 0.43 0.33 0.19
    下载: 导出CSV
  • [1] TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal: Comparison between gasification in O2 and CO2[J]. Fuel Process Technol,2010,91(8):800−804. doi: 10.1016/j.fuproc.2009.10.016
    [2] LIANG D C, XIE Q, LIU J C, LIU D Q, WAN C R, YANG S. Transformation of alkali and alkaline earth metals during the preparation of activated carbon from Zhundong high-alkali coal[J]. RSC Adv,2021,11(7):3870−3878. doi: 10.1039/D0RA09518D
    [3] JENA M K, KUMAR V, LIU S M, LI C Z, VUTHALURU H. Mechanistic insights into the kinetic compensation effects during the gasification of Loy Yang brown coal char in O2[J]. Ind Eng Chem Res,2021,60(49):17881−17896. doi: 10.1021/acs.iecr.1c03569
    [4] WANG C A, TANG G T, SUN R J, HU G T, YUAN M B, Che D F. The correlations of chemical property, alkali metal distribution, and fouling evaluation of Zhundong coal[J]. J Energy Inst,2020,93(6):2204−2214. doi: 10.1016/j.joei.2020.06.002
    [5] ZHANG T, LI Z S, HU F, HUANG X H, LIU Z H. Correlation of sodium releasing and mineral transformation characteristics with ash composition of typical high-alkali coals[J]. Fuel Process Technol,2021,224:107035. doi: 10.1016/j.fuproc.2021.107035
    [6] LIU D B, LI W, LI S Y, SONG W H, LIU D F, KONG R J. Transformation characteristics of sodium, chlorine and sulfur of Zhundong coal during O2/CO2 combustion in circulating fluidized bed[J]. Energy,2019,185:254−261. doi: 10.1016/j.energy.2019.07.043
    [7] ZHAO Y, GUO S, SHAO C Y, CHEN X Y, CHEN L, CHEN G, SUN S Z, QIU P H, XING C. Combined impacts of intrinsic alkali and alkaline earth metals and chemical structure on reactivity of low-rank coal char: New explanation for the role of water-soluble AAEMs during pyrolysis and gasification[J]. Fuel,2021,305:121405. doi: 10.1016/j.fuel.2021.121405
    [8] LI X, LI J, WU G G, BAI Z Q, LI W. Clean and efficient utilization of sodium-rich Zhundong coals in China: Behaviors of sodium species during thermal conversion processes[J]. Fuel,2018,218:162−173. doi: 10.1016/j.fuel.2018.01.027
    [9] LI S C, HAN L, LI X. Structural changes of Zhundong coal matrix induced by thermal treatment and its effects on oil yield in direct coal liquefaction[J]. Int J Energy Res,2021,46(2):1457−1466.
    [10] LI X, BAI Z Q, BAI J, HAN Y N, KONG L X, LI W. Transformations and roles of sodium species with different occurrence modes in direct liquefaction of Zhundong coal from Xinjiang, northwestern China[J]. Energy Fuels,2015,29(9):5633−5639. doi: 10.1021/acs.energyfuels.5b01138
    [11] YE D H, FENG Z H, HOU R R, JIA Y X, GUO Z X, KONG L X, BAI J, BAI Z Q, LI W. Transformation of sulfur forms during pyrolysis of mild liquefaction solid product of Hami coal[J]. J Fuel Chem Technol,2020,48(9):1025−1034.
    [12] LI X, BAI Z Q, LI W. Chemical transformation of sodium species during direct liquefaction of a sodium-rich Zhundong coal under different atmospheres and CO2 gasification of the direct coal liquefaction residue[J]. Fuel,2018,213:144−149. doi: 10.1016/j.fuel.2017.10.119
    [13] LU H, PENG B Z, GE Z F, BAI J, KONG L X, LI H Z, LIU Z, BAI Z Q, LI W. The viscosity and crystallization behavior of slag from co-gasification of coal and extraction residue from direct coal liquefaction residue at high temperatures[J]. Fuel,2021,285:119119. doi: 10.1016/j.fuel.2020.119119
    [14] CAO X, PENG B Z, KONG L X, BAI J, GE Z F, LI H Z, LIU Z, FENG Z Y, BI D P, BAI Z Q, SZLEK A, LI W. Flow properties of ash and slag under co-gasification of coal and extract residue of direct coal liquefaction residue[J]. Fuel,2020,264:116850. doi: 10.1016/j.fuel.2019.116850
    [15] YU J Q, DING L, CHENG C, MOSQUEDA A, BAI Y H, YU G S. Release characteristics of alkali and alkaline earth metals in nascent char during rapid pyrolysis[J]. Fuel,2022,323:124376. doi: 10.1016/j.fuel.2022.124376
    [16] MEI Y G, WANG Z Q, FANG Y T, HUANG J J, LI W Z, GUO S, LI L. CO2 catalytic gasification with NaAlO2 addition for its low-volatility and tolerant to deactivate[J]. Fuel,2019,242:160−166. doi: 10.1016/j.fuel.2019.01.014
    [17] TIAN H, HU Q S, WANG J W, LIU L, YANG Y, BRIDGWATER A V. Steam gasification of Miscanthus derived char: the reaction kinetics and reactivity with correlation to the material composition and microstructure[J]. Energy Convers Manag,2020,219:113026. doi: 10.1016/j.enconman.2020.113026
    [18] MIAO H Y, WANG Z Q, WANG Z F, SUN H C, LI X Y, LIU Z Y, DONG L B, ZHAO J T, HUANG J J, FANG Y T. Effects of Na2CO3/Na2SO4 on catalytic gasification reactivity and mineral structure of coal gangue[J]. Energy,2022,255:124498. doi: 10.1016/j.energy.2022.124498
    [19] HAN L, ZHU C C, YAO Q, LI P, WU G G, MENG X L, ZHANG B, LI X, BAI Z Q, LI W. In-situ catalytic gasification of sodium-rich direct coal liquefaction residue under CO2 atmosphere and kinetic analysis of gasification reaction process[J]. J Energy Inst,2022,101:233−242. doi: 10.1016/j.joei.2022.02.002
    [20] ZHANG D M, WEI W W, LU L B, JIN H, GUO L J. Variation of pore structure in Zhundong coal particle with stepped K2CO3 loading during supercritical water gasification[J]. Fuel,2021,305:121457. doi: 10.1016/j.fuel.2021.121457
    [21] WEI J T, GONG Y, DING L, YU J Q, YU G S. Influence of biomass ash additive on reactivity characteristics and structure evolution of coal char-CO2 gasification[J]. Energy Fuels,2018,32(10):10428−10436. doi: 10.1021/acs.energyfuels.8b02028
    [22] WEI R D, REN L W, GENG F J. Gasification reactivity and characteristics of coal chars and petcokes[J]. J Energy Inst,2021,96:25−30. doi: 10.1016/j.joei.2020.07.012
    [23] NING X J, PENG Z F, WANG G W, ZHANG J L, SONG T F. Experimental study on gasification mechanism of unburned pulverized coal catalyzed by alkali metal vapor[J]. J Energy Inst,2020,93(2):679−694. doi: 10.1016/j.joei.2019.05.012
    [24] BAI Y H, LV P, LI F, SONG X D, SU W G, YU G S. Investigation into Ca/Na compounds catalyzed coal pyrolysis and char gasification with steam[J]. Energy Convers Manag,2019,184:172−179. doi: 10.1016/j.enconman.2019.01.063
    [25] LYU X, HU J Y. Assessment of lignite upgrade and hydrogen evolution via electrolysis[J]. Energy Convers Manag,2022,253:115181. doi: 10.1016/j.enconman.2021.115181
    [26] ZHANG W Q, HE Y H, WANG Y F, LI G Q, CHEN J B, ZHU Y Z. Comprehensive investigation on the gasification reactivity of pyrolysis residue derived from Ca-rich petrochemical sludge: Roles of microstructure characteristics and calcium evolution[J]. Energy Convers Manag,2022,253:115150. doi: 10.1016/j.enconman.2021.115150
    [27] LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel,2006,85(12/13):1700−1707.
    [28] ZHENG L Q, JIN J, LIU Z Y, KOU X S, HE X, SHEN L. Ash formation characteristics in co-combusting coagulation sludge and Zhundong coal[J]. Fuel,2022,311:122571. doi: 10.1016/j.fuel.2021.122571
  • 加载中
图(12) / 表(5)
计量
  • 文章访问数:  2086
  • HTML全文浏览量:  41
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-29
  • 修回日期:  2022-10-25
  • 录用日期:  2022-10-25
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回