Preparation of Highly Dispersed Silicon Spheres Supported Cobalt-Based Catalysts and Their Catalytic Performance for Fischer-Tropsch Synthesis
-
摘要: 利用等体积浸渍法将钴前驱体浸渍在结构规整的硅球(SP)载体上,在不同强度的等离子体场中分解钴盐,制备出一系列高分散Co/SP催化剂。采用X射线粉末衍射、氮气物理吸附-脱附、扫描透射电子显微镜和傅里叶红外变换光谱等表征手段对催化剂结构进行表征,并在固定反应器上进行费-托合成催化性能测试,探讨等离子体处理强度对费-托合成催化剂的分散度、还原度、相互作用的影响规律。结果表明,等离子体处理催化剂在费-托合成反应中表现出比焙烧样品更优越的催化性能,其中Co/SP-P650W由于具有较适宜的分散度和相对较高的还原性,呈现出最高的费-托合成反应活性。Abstract: A series of silicon spheres supported cobalt catalysts were prepared by incipient wetness impregnation method, and subsequently, the catalyst precursors were decomposed by glow discharge plasma treatment with different treating intensities. The catalysts were characterized by X-ray powder diffraction, N2 physical adsorption - desorption, H2 temperature-programmed reduction, transmission electron microscope and Fourier-Transform Infrared spectroscopy, and their Fischer-Tropsch synthesis performance were tested on a fixed bed reactor. The influence of plasma treatment on cobalt dispersion, reducibility and cobalt-support interaction were analyzed and discussed. The results showed that the plasma-treated catalysts had better catalytic performance than the calcined sample, and Co/SP-P650W catalyst showed a highest reaction activity due to its proper cobalt dispersion and higher cobalt reducibility.
-
表 1 Co/SP催化剂等离子体处理参数
Table 1 Plasma treating parameters of Co/SP catalysts
Catalysts Output
power (W)Duty factor Glow discharge Voltage (Pa) Treating time
(h)The temperature of the treating chamber (℃) Treating atmosphere Co/SP-P430W 430 20% 100 1 80 Air Co/SP-P650W 650 20% 100 1 142 Air Co/SP-P1900W 1900 20% 100 1 203 Air 表 2 还原前后Co/SP催化剂的钴颗粒尺寸(XRD和TEM)
Table 2 Cobalt particle sizes of Co/SP catalysts before and after reduction (XRD and TEM)
Catalyst DCo3O4
(TEM, nm)DCo3O4
(XRD, nm)DCoO-red
(XRD, nm)DCoO-red
(TEM, nm)Co/SP-C − 21.6 21.3(Co) − Co/SP-P430W 3.1 4.6 6.3 − Co/SP-P650W 6.4 6.2 6.0 7.7 Co/SP-P1900W 7.4 7.5 7.9 − 表 3 还原前后Co/SP催化剂的Co 2p3/2 XPS结合能和表面元素比值
Table 3 Co 2p3/2 binding energy and surface element ratio of Co/SP catalysts before and after reduction
Catalysts B.E.Co2p3/2(eV) B.E.Co2p3/2-red(eV) Co/Si Co/Si-red Co/SP-C 780.4 781.7 0.012 0.041 Co/SP-P430W 781.1 782.0 0.075 0.064 Co/SP-P650W 781.2 781.8 0.057 0.067 Co/SP-P1900W 781.6 781.9 0.057 0.054 表 4 Co/SP催化剂的费-托合成反应性能
Table 4 FTS performance of Co/SP catalysts
Catalysts COconversion (%) CO2 selectivity (%) Hydrocarbon selectivity(%) CH4 C2−C4 C5 + Co/SP-C 6.5 0.4 6.9 7.4 85.7 Co/SP-P430W 25.2 0.4 9.9 10.1 80.0 Co/SP-P650W 37.3 1.4 6.4 7.8 85.8 Co/SP-P1900W 29.6 0.2 6.1 8.8 85.1 -
[1] LI Y, ZHANG X, ZHENG Z. A review of transition metal oxygen-evolving catalysts decorated by cerium-based materials: current status and future prospects[J]. CCS Chem,2022,4(1):31−53. doi: 10.31635/ccschem.021.202101194 [2] 杨展董, 马恩娟, 张乾, 栾春晖, 黄伟. 氮掺杂碳纳米管担载CuCoCe对合成气制低碳醇的催化性能[J]. 燃料化学学报,2020,48(7):804−812. doi: 10.3969/j.issn.0253-2409.2020.07.005YANG Zhan-dong, MA En-juan, ZHANG Qian, LUAN Chun-hui, HUANG Wei. Catalytic performance of nitrogen-doped carbon nanotubes loaded with CuCoCe for producing low carbon alcohols from syngas[J]. J Fuel Chem Techno,2020,48(7):804−812. doi: 10.3969/j.issn.0253-2409.2020.07.005 [3] VOSOUGHI V, BADOGA S, DALAI A K, ABATZOGLOU N. Modification of mesoporous alumina as a support for cobalt-based catalyst in Fischer-Tropsch synthesis[J]. Fuel Process Technol,2017,162:55−65. doi: 10.1016/j.fuproc.2017.03.029 [4] LI J C, XIAO F, ZHONG H, LI T, XU M J, MA L, CHENG M, LIU D, FENG S, SHI Q R, CHENG H M, LIU C, DU D, BECKMAN S P, PAN X Q, LIN Y H, SHAO M H. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction[J]. ACS Catal,2019,9(7):5929−5934. doi: 10.1021/acscatal.9b00869 [5] 卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 李德宝. 费托合成钴基催化剂微观结构研究进展[J]. 燃料化学学报,2022,50(4):436−445.LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Advances in the microstructure of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. J Fuel Chem Techno,2022,50(4):436−445. [6] ZHAO Z, LU W, FENG C H, CHEN X K, ZHU H J, DING Y J. Increasing the activity and selectivity of Co-based FTS catalysts supported by carbon materials for direct synthesis of clean fuels by the addition of chromium[J]. J Catal,2019,370:251−264. doi: 10.1016/j.jcat.2018.12.022 [7] WOLF M, KOTZE H, FISHER N, CLAEYS M. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment[J]. Faraday Discuss,2017,197:243−268. doi: 10.1039/C6FD00200E [8] XIAO Z, WANG Y, HUANG Y-C, WEI Z, DONG C-L, MA J, SHEN S, LI Y, WANG S. Filling the oxygen vacancies in Co3O4 with phosphorus: an ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ Sci,2017,10(12):2563−2569. doi: 10.1039/C7EE01917C [9] 徐艳, 徐晶晶, 王晓辉, 李靖, 王鹏. 冷等离子体增强制备碳一化学催化剂的研究进展[J]. 表面技术,2018,47(4):81−89. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.012XU Yan, XU Jing-jing, WANG Xiao-hui, LI Jing, WANG Peng. Progress in preparation of carbon - chemical catalyst by cold plasma enhancement[J]. Surf Technol,2018,47(4):81−89. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.012 [10] GAO S, HONG J, XIAO G, CHEN S, ZHANG Y, LI J. Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance[J]. J Catal,2019,374:246−256. doi: 10.1016/j.jcat.2019.04.039 [11] FU T, HUANG C, LV J, LI Z. Fuel production through Fischer–Tropsch synthesis on carbon nanotubes supported Co catalyst prepared by plasma[J]. Fuel,2014,121:225−231. doi: 10.1016/j.fuel.2013.12.049 [12] HONG J, DU J, WANG B, ZHANG Y, LIU C, XIONG H, SUN F, CHEN S, LI J. Plasma-Assisted preparation of highly dispersed cobalt catalysts for enhanced Fischer–Tropsch synthesis performance[J]. ACS Catal,2018,8(7):6177−6185. doi: 10.1021/acscatal.8b00960 [13] STöBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interf Sci,1968,26(1):62−69. doi: 10.1016/0021-9797(68)90272-5 [14] QIU C W, MENG Q W, PANCHAL M, LI C Z, Wu B S. Enhanced Fischer-Tropsch activity in ammonium nitrate pretreated cobalt-silica catalyst[J]. Catal Commun,2020,147(2):106149. [15] LAI Q, PASKEVICIUS M, SHEPPARD D A, BUCKLEY C E, THORNTON A W, HILL M R, GU Q, MAO J, HUANG Z, LIU H K, GUO Z, BANERJEE A, CHAKRABORTY S, AHUJA R, AGUEY-ZINSOU K F. Hydrogen storage materials for mobile and stationary applications: current state of the art[J]. ChemSusChem,2015,8(17):2789−2825. doi: 10.1002/cssc.201500231 [16] KHODAKOV AY, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496 [17] KERKHOF F P J, MOULIJN J A. Quantitative analysis of XPS intensities for supported catalysts[J]. J Phys Chem.,1979,83(12):1612−1619. doi: 10.1021/j100475a011 [18] CHERNYAK S A, SUSLOVA E V, IVANOV A S, EGOROV A V, MASLAKOV K I, SAVILOV S V, LUNIN V V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis[J]. Appl Catal A-Gen,2016,523:221−229. doi: 10.1016/j.apcata.2016.06.012 [19] FRATALOCCHI L, LIETTI L, VISCONTI C G, FISCHER N, CLAEYS M. Catalytic consequences of platinum deposition order on cobalt-based Fischer–Tropsch catalysts with low and high cobalt oxide dispersion[J]. Catal Sci Technol,2019,9(12):3177−3192. doi: 10.1039/C9CY00347A [20] YANG K, SWANSON K, JIN W, COLEY C, EIDEN P, GAO H, GUZMAN-PEREZ A, HOPPER T, KELLEY B, MATHEA M, PALMER A, SETTELS V, JAAKKOLA T, JENSEN K, BARZILAY R. Analyzing learned molecular representations for property prediction[J]. J Colloid Interf Sci,2019,59(8):3370−3388. [21] BAO A, LI J, ZHANG Y. Effect of barium on reducibility and activity for cobalt-based Fischer-Tropsch synthesis catalysts[J]. J Nat Gas Chem,2010,19(6):622−627. doi: 10.1016/S1003-9953(09)60120-1 [22] GIL M V, FERMOSO J, RUBIERA F, CHEN D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology[J]. Catal Today,2015,242:19−34. doi: 10.1016/j.cattod.2014.04.018 [23] OCCELLI M L, PSARAS D, SUIB S L. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A-Gen,2020,602(2):117701. [24] VAN DEELEN T W, HERNáNDEZ MEJíA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x [25] KARACA H, HONG J, FONGARLAND P, ROUSSEL P, GRIBOVAL-CONSTANT A, LACROIX M, HORTMANN K, SAFONOVA O V, KHODAKOV A Y. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. ChemComm,2010,46(5):788−790. -