留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅球负载高分散钴基催化剂的制备及其费-托合成催化性能研究

张萌 刘佳 张煜华 王立 李金林 洪景萍

张萌, 刘佳, 张煜华, 王立, 李金林, 洪景萍. 硅球负载高分散钴基催化剂的制备及其费-托合成催化性能研究[J]. 燃料化学学报(中英文), 2023, 51(5): 608-615. doi: 10.1016/S1872-5813(22)60078-1
引用本文: 张萌, 刘佳, 张煜华, 王立, 李金林, 洪景萍. 硅球负载高分散钴基催化剂的制备及其费-托合成催化性能研究[J]. 燃料化学学报(中英文), 2023, 51(5): 608-615. doi: 10.1016/S1872-5813(22)60078-1
ZHANG Meng, LIU Jia, ZHANG Yu-hua, WANG Li, LI Jin-lin, HONG Jing-ping. Preparation of highly dispersed silicon spheres supported cobalt-based catalysts and their catalytic performance for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 608-615. doi: 10.1016/S1872-5813(22)60078-1
Citation: ZHANG Meng, LIU Jia, ZHANG Yu-hua, WANG Li, LI Jin-lin, HONG Jing-ping. Preparation of highly dispersed silicon spheres supported cobalt-based catalysts and their catalytic performance for Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, 2023, 51(5): 608-615. doi: 10.1016/S1872-5813(22)60078-1

硅球负载高分散钴基催化剂的制备及其费-托合成催化性能研究

doi: 10.1016/S1872-5813(22)60078-1
详细信息
    通讯作者:

    E-mail: jinlinli@aliyun.com

    jingpinghong@mail.scuec.edu.cn

  • 中图分类号: TQ529.2; TQ426

Preparation of highly dispersed silicon spheres supported cobalt-based catalysts and their catalytic performance for Fischer-Tropsch synthesis

  • 摘要: 利用等体积浸渍法将钴前驱体浸渍在结构规整的硅球(SP)载体上,在不同强度的等离子体场中分解钴盐,制备出一系列高分散Co/SP催化剂。采用X射线粉末衍射、氮气物理吸附-脱附、扫描透射电子显微镜和傅里叶红外变换光谱等表征手段对催化剂结构进行表征,并在固定反应器上进行费-托合成催化性能测试,探讨等离子体处理强度对费-托合成催化剂的分散度、还原度、相互作用的影响规律。结果表明,等离子体处理催化剂在费-托合成反应中表现出比焙烧样品更优越的催化性能,其中,Co/SP-P650W由于具有较适宜的分散度和相对较高的还原性,呈现出最高的费-托合成反应活性。
  • FIG. 2290.  FIG. 2290.

    FIG. 2290.  FIG. 2290.

    图  1  硅球的XRD谱图(a)、TEM照片(b)和粒径分布(c)

    Figure  1  XRD pattern (a), TEM image (b) and particle size distribution (c) of silicon spheres

    图  2  硅球的氮气物理吸附-脱附曲线(a)和孔径分布(b)

    Figure  2  N2 physical adsorption-desorption isotherm (a) and pore size distribution curve (b) of silicon spheres

    图  3  Co/SP催化剂的FT-IR谱图(a)和XRD谱图(b)

    Figure  3  FT-IR spectra (a) and XRD patterns (b) of Co/SP catalysts

    图  4  Co/SP催化剂的TEM照片和Co3O4粒径分布

    Figure  4  TEM images and Co3O4 particle size distributions of Co/SP catalysts

    (a): Co/SP-C;(b), (e): Co/SP-P430W; (c), (f): Co/SP-P650W;(d), (g): Co/SP-P1900W

    图  5  Co/SP催化剂中Co 2p XPS谱图(a)和H2-TPR谱图(b)

    Figure  5  Co 2p XPS spectra (a) and H2-TPR curves (b) of Co/SP catalysts

    图  6  400 ℃下H2还原5 h 的Co / SP催化剂XRD谱图(a)和Co 2p XPS谱图(b)

    Figure  6  XRD patterns (a) and Co 2p XPS spectra (b) of Co/SP catalysts after H2 reduction at 400 ℃ for 5 h

    图  7  (a) Co/SP-C,(b) Co/SP-P650W催化剂在400 ℃下H2还原5 h的TEM照片,以及(c) Co/SP-P650W的粒径分布

    Figure  7  TEM images of (a) Co/SP-C and (b) Co/SP-P650W after reduction by H2 at 400 ℃ for 5 h, (c) Particle size distribution of Co/SP-P650W

    图  8  Co/SP催化剂CO初始转化率和产物选择性

    Figure  8  Initial CO conversion and product selectivity of Co/SP catalysts

    表  1  Co/SP催化剂等离子体处理参数

    Table  1  Plasma treatment parameters of Co/SP catalysts

    CatalystOutput power/WDuty factor/%Glow discharge voltage/PaTreatment time/hTemperature of the treating chamber/℃Treatment atmosphere
    Co/SP-P430W43020100180air
    Co/SP-P650W650201001142air
    Co/SP-P1900W1900201001203air
    下载: 导出CSV

    表  2  还原前后Co/SP催化剂的钴颗粒尺寸(XRD和TEM)

    Table  2  Cobalt particle sizes of Co/SP catalysts before and after reduction (XRD and TEM)

    Catalyst${D_{{\rm{C}}{{\rm{o}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}}} $/(TEM, nm)${D_{{\rm{C}}{{\rm{o}}_{\rm{3}}}{{\rm{O}}_{\rm{4}}}}} $/(XRD, nm)DCoO-red/(XRD, nm)DCoO-red/(TEM, nm)
    Co/SP-C21.621.3(Co)
    Co/SP-P430W3.14.66.3
    Co/SP-P650W6.46.26.07.7
    Co/SP-P1900W7.47.57.9
    下载: 导出CSV

    表  3  还原前后Co/SP催化剂的Co 2p3/2 XPS结合能和表面元素比值

    Table  3  Co 2p3/2 binding energy and surface element ratio of Co/SP catalysts before and after reduction

    CatalystCo 2p3/2 E/eVCo 2p3/2-red E/eVCo/SiCo/Si-red
    Co/SP-C780.4781.70.0120.041
    Co/SP-P430W781.1782.00.0750.064
    Co/SP-P650W781.2781.80.0570.067
    Co/SP-P1900W781.6781.90.0370.054
    下载: 导出CSV

    表  4  Co/SP催化剂的费-托合成反应性能

    Table  4  FTs performance of Co/SP catalysts

    CatalystCO conversion/%CO2 selectivity/%Hydrocarbon selectivity/%
    CH4C2−C4C5 +
    Co/SP-C6.50.46.97.485.7
    Co/SP-P430W25.20.49.910.180.0
    Co/SP-P650W37.31.46.47.885.8
    Co/SP-P1900W29.60.26.18.885.1
    下载: 导出CSV
  • [1] LI Y, ZHANG X, ZHENG Z. A review of transition metal oxygen-evolving catalysts decorated by cerium-based materials: current status and future prospects[J]. CCS Chem,2022,4(1):31−53. doi: 10.31635/ccschem.021.202101194
    [2] 杨展董, 马恩娟, 张乾, 栾春晖, 黄伟. 氮掺杂碳纳米管担载CuCoCe对合成气制低碳醇的催化性能[J]. 燃料化学学报,2020,48(7):804−812. doi: 10.3969/j.issn.0253-2409.2020.07.005

    YANG Zhan-dong, MA En-juan, ZHANG Qian, LUAN Chun-hui, HUANG Wei. Catalytic performance of nitrogen-doped carbon nanotubes loaded with CuCoCe for producing low carbon alcohols from syngas[J]. J Fuel Chem Technol,2020,48(7):804−812. doi: 10.3969/j.issn.0253-2409.2020.07.005
    [3] VOSOUGHI V, BADOGA S, DALAI A K, ABATZOGLOU N. Modification of mesoporous alumina as a support for cobalt-based catalyst in Fischer-Tropsch synthesis[J]. Fuel Process Technol,2017,162:55−65. doi: 10.1016/j.fuproc.2017.03.029
    [4] LI J C, XIAO F, ZHONG H, LI T, XU M J, MA L, CHENG M, LIU D, FENG S, SHI Q R, CHENG H M, LIU C, DU D, BECKMAN S P, PAN X Q, LIN Y H, SHAO M H. Secondary-atom-assisted synthesis of single iron atoms anchored on N-doped carbon nanowires for oxygen reduction reaction[J]. ACS Catal,2019,9(7):5929−5934. doi: 10.1021/acscatal.9b00869
    [5] 卢文丽, 王俊刚, 孙德魁, 马中义, 陈从标, 侯博, 李德宝. 费托合成钴基催化剂微观结构研究进展[J]. 燃料化学学报,2022,50(4):436−445.

    LU Wen-li, WANG Jun-gang, SUN De-kui, MA Zhong-yi, CHEN Cong-biao, HOU Bo, LI De-bao. Advances in the microstructure of cobalt-based catalysts for Fischer-Tropsch synthesis[J]. J Fuel Chem Technol,2022,50(4):436−445.
    [6] ZHAO Z, LU W, FENG C H, CHEN X K, ZHU H J, DING Y J. Increasing the activity and selectivity of Co-based FTS catalysts supported by carbon materials for direct synthesis of clean fuels by the addition of chromium[J]. J Catal,2019,370:251−264. doi: 10.1016/j.jcat.2018.12.022
    [7] WOLF M, KOTZE H, FISHER N, CLAEYS M. Size dependent stability of cobalt nanoparticles on silica under high conversion Fischer-Tropsch environment[J]. Faraday Discuss,2017,197:243−268. doi: 10.1039/C6FD00200E
    [8] XIAO Z, WANG Y, HUANG Y-C, WEI Z, DONG C-L, MA J, SHEN S, LI Y, WANG S. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting[J]. Energy Environ Sci,2017,10(12):2563−2569. doi: 10.1039/C7EE01917C
    [9] 徐艳, 徐晶晶, 王晓辉, 李靖, 王鹏. 冷等离子体增强制备碳一化学催化剂的研究进展[J]. 表面技术,2018,47(4):81−89. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.012

    XU Yan, XU Jing-jing, WANG Xiao-hui, LI Jing, WANG Peng. Progress in preparation of carbon-chemical catalyst by cold plasma enhancement[J]. Surf Technol,2018,47(4):81−89. doi: 10.16490/j.cnki.issn.1001-3660.2018.04.012
    [10] GAO S, HONG J, XIAO G, CHEN S, ZHANG Y, LI J. Evolution of cobalt species in glow discharge plasma prepared CoRu/SiO2 catalysts with enhanced Fischer-Tropsch synthesis performance[J]. J Catal,2019,374:246−256. doi: 10.1016/j.jcat.2019.04.039
    [11] FU T, HUANG C, LV J, LI Z. Fuel production through Fischer-Tropsch synthesis on carbon nanotubes supported Co catalyst prepared by plasma[J]. Fuel,2014,121:225−231. doi: 10.1016/j.fuel.2013.12.049
    [12] HONG J, DU J, WANG B, ZHANG Y, LIU C, XIONG H, SUN F, CHEN S, LI J. Plasma-assisted preparation of highly dispersed cobalt catalysts for enhanced Fischer-Tropsch synthesis performance[J]. ACS Catal,2018,8(7):6177−6185. doi: 10.1021/acscatal.8b00960
    [13] STöBER W, FINK A, BOHN E. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colloid Interf Sci,1968,26(1):62−69. doi: 10.1016/0021-9797(68)90272-5
    [14] QIU C W, MENG Q W, PANCHAL M, LI C Z, WU B S. Enhanced Fischer-Tropsch activity in ammonium nitrate pretreated cobalt-silica catalyst[J]. Catal Commun,2020,147(2):106149.
    [15] LAI Q, PASKEVICIUS M, SHEPPARD D A, BUCKLEY C E, THORNTON A W, HILL M R, GU Q, MAO J, HUANG Z, LIU H K, GUO Z, BANERJEE A, CHAKRABORTY S, AHUJA R, AGUEY-ZINSOU K F. Hydrogen storage materials for mobile and stationary applications: Current state of the art[J]. ChemSusChem,2015,8(17):2789−2825. doi: 10.1002/cssc.201500231
    [16] KHODAKOV AY, GRIBOVAL-CONSTANT A, BECHARA R, ZHOLOBENKO V L. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas[J]. J Catal,2002,206(2):230−241. doi: 10.1006/jcat.2001.3496
    [17] KERKHOF F P J, MOULIJN J A. Quantitative analysis of XPS intensities for supported catalysts[J]. J Phys Chem,1979,83(12):1612−1619. doi: 10.1021/j100475a011
    [18] CHERNYAK S A, SUSLOVA E V, IVANOV A S, EGOROV A V, MASLAKOV K I, SAVILOV S V, LUNIN V V. Co catalysts supported on oxidized CNTs: Evolution of structure during preparation, reduction and catalytic test in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2016,523:221−229. doi: 10.1016/j.apcata.2016.06.012
    [19] FRATALOCCHI L, LIETTI L, VISCONTI C G, FISCHER N, CLAEYS M. Catalytic consequences of platinum deposition order on cobalt-based Fischer-Tropsch catalysts with low and high cobalt oxide dispersion[J]. Catal Sci Technol,2019,9(12):3177−3192. doi: 10.1039/C9CY00347A
    [20] YANG K, SWANSON K, JIN W, COLEY C, EIDEN P, GAO H, GUZMAN-PEREZ A, HOPPER T, KELLEY B, MATHEA M, PALMER A, SETTELS V, JAAKKOLA T, JENSEN K, BARZILAY R. Analyzing learned molecular representations for property prediction[J]. J Colloid Interf Sci,2019,59(8):3370−3388.
    [21] BAO A, LI J, ZHANG Y. Effect of barium on reducibility and activity for cobalt-based Fischer-Tropsch synthesis catalysts[J]. J Nat Gas Chem,2010,19(6):622−627. doi: 10.1016/S1003-9953(09)60120-1
    [22] GIL M V, FERMOSO J, RUBIERA F, CHEN D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology[J]. Catal Today,2015,242:19−34. doi: 10.1016/j.cattod.2014.04.018
    [23] OCCELLI M L, PSARAS D, SUIB S L. A mini review of cobalt-based nanocatalyst in Fischer-Tropsch synthesis[J]. Appl Catal A: Gen,2020,602(2):117701.
    [24] VAN DEELEN T W, HERNÁNDEZ MEJÍA C, DE JONG K P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity[J]. Nat Catal,2019,2(11):955−970. doi: 10.1038/s41929-019-0364-x
    [25] KARACA H, HONG J, FONGARLAND P, ROUSSEL P, GRIBOVAL-CONSTANT A, LACROIX M, HORTMANN K, SAFONOVA O V, KHODAKOV A Y. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis[J]. Chem Commun,2010,46(5):788−790.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  3065
  • HTML全文浏览量:  36
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-30
  • 修回日期:  2022-11-15
  • 录用日期:  2022-11-18
  • 网络出版日期:  2022-12-26
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回