[1] |
付彧, 孙予罕. CH4–CO2重整技术的挑战与展望[J]. 中国科学(化学), 2020, 50(7): 816–831.FU Yu, SUN Yu-han. CH4-CO2 reforming: challenges and outlook. Sci Sin Chim, 2020, 50: 816–831
|
[2] |
张涛, 刘志成, 杨为民. 低碳烷烃与二氧化碳催化转化研究进展[J]. 中国科学(化学),2021,51(2):154−164. doi: 10.1360/SSC-2020-0171ZHANG T, LIU ZC, YANG WM. Progress in the catalytic conversion of light alkanes with carbon dioxide[J]. Sci Sin Chim,2021,51(2):154−164. doi: 10.1360/SSC-2020-0171
|
[3] |
阮勇哲, 卢遥, 王胜平. 甲烷干重整Ni基催化剂失活及抑制失活研究进展[J]. 化工进展,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241RUAN Y, LU Y, WANG S. Progress in deactivation and anti-deactivation of nickel-based catalysts for methane dry reforming[J]. Chem. Ind. Eng. Progr.,2018,37(10):3850−3857. doi: 10.16085/j.issn.1000-6613.2017-2241
|
[4] |
张荣俊, 夏国富, 李明丰, 吴玉, 聂红, 李大东. 载体类型对Ni基催化剂甲烷干重整反应性能的影响[J]. 燃料化学学报,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011ZHANG R, XIA G, LI M, WU Y, NIE H, LI D. Effect of support on catalytic performance of Ni-based catayst in methane dry reforming[J]. J. Fuel Chem. Technol.,2015,43(11):1359−1365. doi: 10.3969/j.issn.0253-2409.2015.11.011
|
[5] |
WANG Y-B, HE L, ZHOU B-C, SHENG J, FAN J, LI W-C. Anti-coking NiCe /HAP catalyst with well-balanced carbon formation and gasification in methane dry reforming[J]. Fuel,2022,329:125477. doi: 10.1016/j.fuel.2022.125477
|
[6] |
YANG B, DENG J, LI H, YAN T, ZHANG J, ZHANG D. Coking-resistant dry reforming of methane over Ni/γ-Al2O3 catalysts by rationally steering metal-support interaction[J]. iScience,2021,24:102747. doi: 10.1016/j.isci.2021.102747
|
[7] |
BIAN Z, ZHONG W, YU Y, WANG Z, JIANG B, KAWI S. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: effect of calcination temperature[J]. Int. J. Hydrogen Energy,2021,46:31041−31053. doi: 10.1016/j.ijhydene.2020.12.064
|
[8] |
JOO S, SEONG A, KWON O, KIM K, LEE J H, GORTE R J, VOHS J M, HAN J W, KIM G. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition[J]. Sci. Adv.,2020,6:eabb1573. doi: 10.1126/sciadv.abb1573
|
[9] |
HE L, LI M, LI W-C, XU W, WANG Y, WANG Y-B, SHEN W, LU A-H. Robust and coke-free Ni catalyst stabilized by 1–2 nm–thick multielement oxide for methane dry reforming. ACS Catal. , 2021, 11: 12409–12416.
|
[10] |
ALIPOUR Z, REZAEI M, MESHKANI F. Effect of alkaline earth promoters (MgO, CaO, and BaO) on the activity and coke formation of Ni catalysts supported on nanocrystalline Al2O3 in dry reforming of methane[J]. J. Ind. Eng. Chem.,2014,20(5):2858−2863. doi: 10.1016/j.jiec.2013.11.018
|
[11] |
HU Y H. Solid-solution catalysts for CO2 reforming of methane[J]. Catal. Today, 2009, 148 (3–4): 206–211.
|
[12] |
SONG Y, OZDEMIR E, RAMESH S, ADISHEV A, SUBRAMANIAN S, HARALE A, ALBUALI M, FADHEL B A, JAMAL A, MOON D, CHOI S H, YAVUZ C T. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO[J]. Science,2020,367:777−781. doi: 10.1126/science.aav2412
|
[13] |
AKRI M, ZHAO S, LI X, ZANG K, LEE A F, ISAACS M A, XI W, GANGARAJULA Y, LUO J, REN Y, CUI Y-T, LI L, SU Y, PAN X, WEN W, PAN Y, WILSON K, LI L, QIAO B, ISHII H, LIAO Y-F, WANG A, WANG X, ZHANG T. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming[J]. Nat. Commun.,2019,10(1):5181. doi: 10.1038/s41467-019-12843-w
|
[14] |
张三兵, 李作鹏, 鲁润华, 王晓来. 羟基磷灰石负载Ni催化剂中Ni含量对催化甲烷二氧化碳重整制合成气性能的影响[J]. 燃料化学学报,2014,42(4):461−466.ZHANG S, LI Z, LU R, WANG X. Effects of Ni content of Ni/hydroxyapatite catalysts on catalytic properties for carbon dioxide reforming of methane[J]. J. Fuel Chem. Technol.,2014,42(4):461−466.
|
[15] |
王庆楠. 乙醇催化转化制高值含氧化学品[D]. 辽宁: 大连理工大学, 2019.WANG Q-N. Upgrading of ethanol to value-added oxygen-containing chemicals[D]. Dalian University of Technology, 2019.
|
[16] |
TSUCHIDA T, KUBO J, YOSHIOKA T, SAKUMA S, TAKEGUCHI T, UEDA W. Reaction of ethanol over hydroxyapatite affected by Ca/P ratio of catalyst[J]. J. Catal.,2008,259(2):183−189. doi: 10.1016/j.jcat.2008.08.005
|
[17] |
LIN K, CHANG J, ZHU Y, WU W, CHENG G, ZENG Y, RUAN M A. facile one-step surfactant-free and low-temperature hydrothermal method to prepare uniform 3D structured carbonated apatite flowers[J]. Cryst. Growth Des.,2009,9(1):177−181. doi: 10.1021/cg800129u
|
[18] |
WANG X, ZHUANG J, PENG Q, LI Y D. Liquid–solid–solution synthesis of biomedical hydroxyapatite nanorods[J]. Adv. Mater.,2006,18(15):2031−2034. doi: 10.1002/adma.200600033
|
[19] |
MOBASHERPOUR I, HESHAJIN M S, KAZEMZADEH A, ZAKERI M. Synthesis of nanocrystalline hydroxyapatite by using precipitation method[J]. J. Alloys Compd.,2007,430:330−333. doi: 10.1016/j.jallcom.2006.05.018
|
[20] |
WANG Q-N, ZHOU B-C, WENG X-F, LV S-P, SCHÜTH F, LU A-H. Hydroxyapatite nanowires rich in [Ca–O–P] sites for ethanol direct coupling showing high C6–12 alcohol yield[J]. Chem. Commun.,2019,55(70):10420−10423. doi: 10.1039/C9CC05454E
|
[21] |
LONDOñO-RESTREPO S M, ZUBIETA-OTERO L F, JERONIMO-CRUZ R, MONDRAGON M A, RODRIGUEZ-GARCÍA M E. Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones[J]. J. Raman Spectrosc.,2019,50:1120−1129. doi: 10.1002/jrs.5614
|
[22] |
WANG Q-N, WENG X-F, ZHOU B-C, LV S-P, MIAO S, ZHANG D, HAN Y, SCOTT S L, SCHÜTH F, LU A-H. Direct, selective production of aromatic alcohols from ethanol using a tailored bifunctional cobalt-hydroxyapatite catalyst[J]. ACS Catal.,2019,9(8):7204−7216. doi: 10.1021/acscatal.9b02566
|
[23] |
JUN J H, LEE T-J, LIM T H, NAM S-W, HONG S-A, YOON K J. Nickel–calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: characterization and activation[J]. J. Catal.,2004,221(1):178−190. doi: 10.1016/j.jcat.2003.07.004
|
[24] |
MENG J, PAN W, GU T, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. One-pot synthesis of a highly active and stable Ni-embedded hydroxyapatite catalyst for syngas production via dry reforming of methane[J]. Energy Fuels,2021,35:19568−19580. doi: 10.1021/acs.energyfuels.1c02851
|
[25] |
MENG J, GU T, PAN W, BU C, ZHANG J, WANG X, LIU C, XIE H, PIAO G. Promotional effects of defects on Ni/HAP catalyst for carbon resistance and durability during dry reforming of methane[J], Fuel, 2022, 310: 122363.
|
[26] |
WANG Y-B, HE L, ZHOU B-C, TANG F, FAN J, WANG D-Q, LU A-H, LI W-C. Hydroxyapatite Nanorods Rich in [Ca–O–P] Sites Stabilized Ni Species for Methane Dry Reforming. Ind. Eng. Chem. Res. 2021, 60: 15064–15073.
|
[27] |
DAMYANOVA S, PAWELEC B, PALCHEVA R, KARAKIROVA Y, SANCHEZ M C C, TYULIEV G, GAIGNEAUX E, FIERRO J L G. Structure and surface properties of ceria-modified Ni-based catalysts for hydrogen production[J]. Appl. Catal. B-Environ.,2018,225:340−353. doi: 10.1016/j.apcatb.2017.12.002
|
[28] |
ZHU Y, ZHANG S, CHEN B, ZHANG Z, SHI C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane[J]. Catal. Today,2016,264:163−170. doi: 10.1016/j.cattod.2015.07.037
|
[29] |
李睿杰, 章菊萍, 史健, 李孔斋, 刘慧利, 祝星. Ni/CeO2催化剂的金属-载体界面调控及其低温化学链甲烷干重整性能研究[J]. 燃料化学学报,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-XLI R, ZHANG J, SHI J, LI K, LIU H, ZHU X. Regulation of metal-support interface of Ni/CeO2 catalyst and the performance of low temperature chemical looping dry reforming of methane[J]. J. Fuel Chem. Technol.,2022,50(11):1458−1470. doi: 10.1016/S1872-5813(22)60032-X
|
[30] |
BHATTAR S, KRISHNAKUMAR A, KANITKAR S, ABEDIN A, SHEKHAWAT D, HAYNES D J, SPIVEY J J. 110th anniversary: dry reforming of methane over Ni- and Sr-substituted lanthanum zirconate pyrochlore catalysts: effect of Ni loading. Ind. Eng. Chem. Res. [J]. 2019, 58(42): 19386–19396.
|