留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4晶体碳化过程中的晶面效应

李思琪 魏旭松 王洪 青明 索海云 吕振刚 过会闯 刘颖 于欣 杨勇 李永旺

李思琪, 魏旭松, 王洪, 青明, 索海云, 吕振刚, 过会闯, 刘颖, 于欣, 杨勇, 李永旺. Fe3O4晶体碳化过程中的晶面效应[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60335-4
引用本文: 李思琪, 魏旭松, 王洪, 青明, 索海云, 吕振刚, 过会闯, 刘颖, 于欣, 杨勇, 李永旺. Fe3O4晶体碳化过程中的晶面效应[J]. 燃料化学学报. doi: 10.1016/S1872-5813(23)60335-4
LI Si-qi, WEI Xu-song, WANG Hong, QING Ming, SUO Hai-yun, LÜ Zhen-gang, GUO Hui-chuang, LIU Ying, YU Xin, YANG Yong, LI Yong-wang. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60335-4
Citation: LI Si-qi, WEI Xu-song, WANG Hong, QING Ming, SUO Hai-yun, LÜ Zhen-gang, GUO Hui-chuang, LIU Ying, YU Xin, YANG Yong, LI Yong-wang. The effect of crystal plane on Fe3O4 carbonization[J]. Journal of Fuel Chemistry and Technology. doi: 10.1016/S1872-5813(23)60335-4

Fe3O4晶体碳化过程中的晶面效应

doi: 10.1016/S1872-5813(23)60335-4
基金项目: 国家自然科学基金 (21972162 , 22025804) 资助
详细信息
    通讯作者:

    Tel: 18611906663

    E-mail: yyong@sxicc.ac.cn

  • 中图分类号: O643.36

The effect of crystal plane on Fe3O4 carbonization

Funds: The project was supported by the National Natural Science Foundation of China (21972162 and 22025804)
  • 摘要: 在费托合成反应中,Fe基催化剂由于价格低廉、活性高、CH4选择性低等多种优势,被广泛应用于大规模煤炭间接液化工业中。催化性能与催化剂颗粒尺寸、表面结构、成分构成等性质密切相关。还原碳化是铁基催化剂活化的关键步骤,本工作通过改变晶体生长条件,制备了暴露{111}晶面的不同尺寸的Fe3O4-O,以及尺寸接近的Fe3O4-O和暴露{110}晶面的Fe3O4-RD,探究Fe3O4晶粒尺寸以及暴露晶面对碳化过程的影响。结果显示尺寸达到微米级的Fe3O4-O晶体比50纳米的晶体更难被碳化。利用原位XRD表征尺寸均为150 nm的Fe3O4-O和Fe3O4-RD晶体在还原碳化过程中的物相组成变化,结果显示两种晶体的碳化速率不同,且可碳化上限不同,因此晶面取向会影响还原碳化过程。使用TEM表征暴露不同晶面的Fe3O4碳化后的晶体结构,发现两种晶体的形貌均发生改变,形成核壳结构。
  • 图  1  微米级Fe3O4-O1的SEM照片:(a)新鲜样品;(b)对(a)中虚线区域放大;(c) 300 ℃,5%CO气氛碳化12 h;(d)对(c)中虚线区域放大;(e) 300 ℃,100%CO气氛碳化12 h;(f)对(e)中虚线区域放大

    Figure  1  SEM of micron-sized Fe3O4-O1: (a) as prepared sample; (b) zoomed-in image of marked area in (a); (c) carbonized for 12 h in 5%CO at 300 ℃; (d) zoomed-in image of marked area in (c); (e) carbonized for 12 h in 100%CO at 300 ℃; (f) zoomed-in image of marked area in (e)

    图  2  微米级Fe3O4-O1在300 ℃、100%CO气氛中碳化12 h后的XRD谱图

    Figure  2  XRD patterns of micron-sized Fe3O4-O1 carbonized at 300 ℃ in 100% CO for 12 h

    图  3  50 nm Fe3O4-O3在300 ℃、5%CO气氛中碳化不同时间的XRD谱图

    Figure  3  XRD patterns of 50 nm-sized Fe3O4-O3 with different time of carbonization in 5% CO at 300 ℃

    图  4  50 nm Fe3O4-O3碳化前后TEM照片:(a)新鲜样品的TEM;(b)新鲜样品的HRTEM;(c) 对(b)中虚线区域放大;(d)碳化样品的TEM;(e)碳化样品的HRTEM;(f)对(e)中虚线区域放大

    Figure  4  TEM images of 50 nm Fe3O4-O3: (a) TEM of fresh sample; (b) HRTEM of fresh sample; (c) zoomed-in image of marked area in (b); (d) TEM of carbonized sample; (e) HRTEM of carbonized sample; (f) zoomed-in image of marked area in (e)

    图  5  两种尺寸相近的Fe3O4晶体的SEM照片:(a)150 nm左右Fe3O4-O2;(b)对(a)中虚线区域放大;(c)150 nm左右 Fe3O4-RD; (d)对(c)中虚线区域放大

    Figure  5  SEM of Fe3O4 NPs: (a) 150 nm Fe3O4-O2; (b) zoomed-in image of marked area in (a); (c) 150 nm Fe3O4-RD; (d) zoomed-in image of marked area in (c)

    图  6  原位XRD碳化实验的分析:(a1,a2)Fe3O4-O2碳化中特定时间点的XRD谱图和2D热图;(b1,b2) Fe3O4-RD碳化中特定时间点的XRD谱图和2D热图;(c)两种晶体的Fe3O4最强峰2θ=41.3°的相对衍射强度变化;(d)气相色谱分析尾气计算出的CO转化率

    Figure  6  Analysis of in-situ XRD carbonization experiments: (a1, a2) XRD patterns at specific time points and 2D heatmap of Fe3O4-O2 carbonization process;(b1, b2) XRD patterns at specific time points and 2D heatmap of Fe3O4-RD carbonization process; (c) diffraction intensity change of the Fe3O4 strongest peak of two crystals at 2θ=41.3°; (d) CO conversion calculated by gas chromatographic analysis of exhaust gas

    图  7  原位XRD碳化实验结束后样品的TEM照片: (a)Fe3O4-O2碳化后的TEM;(b)Fe3O4-O2碳化后HRTEM;(d)Fe3O4-RD碳化后的TEM;(e)Fe3O4-RD碳化后的HRTEM;(c,f)两个样品(b)和(e)中对应区域的EDX mapping

    Figure  7  TEM images of the samples after the in-situ XRD carbonization experiments: (a) TEM of carbonized Fe3O4-O2; (b) HRTEM of carbonized Fe3O4-O2; (d)TEM of carbonized Fe3O4-RD; (e) HRTEM of carbonized Fe3O4-RD; (c, f) EDX mapping of the corresponding regions of (b) and (e)

  • [1] XIANG H, YONG Y, YONGWANG L. Indirect coal-to-liquids technology from fundamental research to commercialization[J]. Scientia Sinica Chimica,2014,44(12):1876−1892. doi: 10.1360/N032014-00218
    [2] ZHAI P, SUN G, ZHU Q, MA D. Fischer-Tropsch synthesis nanostructured catalysts: understanding structural characteristics and catalytic reaction[J]. Nanotechnol Rev,2013,2(5):547−576. doi: 10.1515/ntrev-2013-0025
    [3] JAHANGIRI H, BENNETT J, MAHJOUBI P, WILSON K, GU S. A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas[J]. Catal Sci Technol,2014,4(8):2210−2229. doi: 10.1039/C4CY00327F
    [4] DE SMIT E, WECKHUYSEN B M. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour[J]. Chem Soc Rev,2008,37(12):2758−2781. doi: 10.1039/b805427d
    [5] JUNG H, THOMSON W J. Dynamic X-ray diffraction study of an unsupported iron catalyst in Fischer-Tropsch synthesis[J]. J Catal,1992,134(2):654−667. doi: 10.1016/0021-9517(92)90350-Q
    [6] ERTL G. Reactions at surfaces: from atoms to complexity (Nobel lecture)[J]. Angew Chem Int Ed,2008,47(19):3524−3535. doi: 10.1002/anie.200800480
    [7] GOODMAN D W. Correlations between surface science models and “real-world” catalysts[J]. J Phys Chem,1996,100(31):13090−13102. doi: 10.1021/jp953755e
    [8] GOODMAN D W. Model studies in catalysis using surface science probes[J]. Chem Rev,1995,95(3):523−536. doi: 10.1021/cr00035a004
    [9] ZHANG Z, WANG S-S, SONG R, CAO T, LUO L, CHEN X, GAO Y, LU J, LI W-X, HUANG W. The most active Cu facet for low-temperature water gas shift reaction[J]. Nat Commun,2017,8(1):1−10. doi: 10.1038/s41467-016-0009-6
    [10] MAY Y A, WANG W-W, YAN H, WEI S, JIA C-J. Insights into facet-dependent reactivity of CuO-CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction[J]. Chin J Catal,2020,41(6):1017−1027. doi: 10.1016/S1872-2067(20)63533-1
    [11] VARANDA L, JAFELICCI JR M, TARTAJ P, O’GRADY K, GONZALEZ-CARRENO T, MORALES M, MUNOZ T, SERNA C. Structural and magnetic transformation of monodispersed iron oxide particles in a reducing atmosphere[J]. J Appl Phys,2002,92(4):2079−2085. doi: 10.1063/1.1496124
    [12] LI P-X, QU L-M, ZHANG C-H, REN X-B, WANG H-X, ZHANG J-L, MU Y-W, LÜ B-L. Probing into the crystal plane effect on the reduction of α-Fe2O3 in CO by Operando Raman spectroscopy[J]. J Fuel Chem Technol,2021,49(10):1558−1566. doi: 10.1016/S1872-5813(21)60154-8
    [13] HUANG Y, QI Q, PAN H, LEI X, LIU X. Facile preparation of octahedral Fe3O4/RGO composites and its microwave electromagnetic properties[J]. J Mater Sci:Mater Electron,2016,27(9):9577−9583. doi: 10.1007/s10854-016-5011-6
    [14] GENG B, MA J, YOU J. Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets[J]. Cryst Growth Des,2008,8(5):1443−1447. doi: 10.1021/cg700931u
    [15] FISCHER N, CLAPHAM B, FELTES T, VAN STEEN E, CLAEYS M. Size-Dependent Phase Transformation of Catalytically Active Nanoparticles Captured In Situ[J]. Angew Chem Int Ed,2014,53(5):1342−1345. doi: 10.1002/anie.201306899
    [16] LIANG J, LI L, LUO M, WANG Y. Fabrication of Fe3O4 octahedra by a triethanolamine-assisted hydrothermal process[J]. Cryst Res Technol,2011,46(1):95−98. doi: 10.1002/crat.201000485
    [17] CHERNAVSKII P. The carburization kinetics of iron-based Fischer-Tropsch synthesis catalysts[J]. Catal Lett,1997,45(3):215−219.
    [18] WU B, BAI L, XIANG H, LI Y-W, ZHANG Z, ZHONG B. An active iron catalyst containing sulfur for Fischer-Tropsch synthesis[J]. Fuel,2004,83(2):205−212. doi: 10.1016/S0016-2361(03)00253-9
    [19] JANBROERS S, CROZIER P, ZANDBERGEN H, KOOYMAN P. A model study on the carburization process of iron-based Fischer-Tropsch catalysts using in situ TEM-EELS[J]. Appl Catal, B,2011,102(3-4):521−527. doi: 10.1016/j.apcatb.2010.12.034
    [20] AMELSE J, BUTT J, SCHWARTZ L. Carburization of supported iron synthesis catalysts[J]. J Phys Chem,1978,82(5):558−563. doi: 10.1021/j100494a012
    [21] NIEMANTSVERDRIET J, VAN DER KRAAN A, VAN DIJK W, VAN DER BAAN H. Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with Mossbauer spectroscopy, X-ray diffraction, carbon content determination, and reaction kinetic measurements[J]. J Phys Chem,2002,84(25):3363−3370.
    [22] HERRANZ T, ROJAS S, PéREZ-ALONSO F J, OJEDA M, TERREROS P, FIERRO J L G. Genesis of iron carbides and their role in the synthesis of hydrocarbons from synthesis gas[J]. J Catal,2006,243(1):199−211. doi: 10.1016/j.jcat.2006.07.012
    [23] BUKUR D B, LANG X, MUKESH D, ZIMMERMAN W H, ROSYNEK M P, LI C. Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis[J]. Ind Eng Chem Res,1990,29(8):1588−1599. doi: 10.1021/ie00104a003
    [24] YU X, HUO C-F, LI Y-W, WANG J, JIAO H. Fe3O4 surface electronic structures and stability from GGA + U[J]. Surf Sci,2012,606(9-10):872−879. doi: 10.1016/j.susc.2012.02.003
    [25] LI S, KRISHNAMOORTHY S, LI A, MEITZNER G D, IGLESIA E. Promoted iron-based catalysts for the Fischer-Tropsch synthesis: design, synthesis, site densities, and catalytic properties[J]. J Catal,2002,206(2):202−217. doi: 10.1006/jcat.2001.3506
    [26] LI S, MEITZNER G D, IGLESIA E. Structure and site evolution of iron oxide catalyst precursors during the Fischer-Tropsch synthesis[J]. J Phys Chem B,2001,105(24):5743−5750. doi: 10.1021/jp010288u
    [27] WANG J, HUANG S, HOWARD S, MUIR B W, WANG H, KENNEDY D F, MA X. Elucidating surface and bulk phase transformation in Fischer-Tropsch synthesis catalysts and their influences on catalytic performance[J]. ACS Catal,2019,9(9):7976−7983. doi: 10.1021/acscatal.9b01104
    [28] ZHU J, WANG P, ZHANG X, ZHANG G, LI R, LI W, SENFTLE T P, LIU W, WANG J, WANG Y. Dynamic structural evolution of iron catalysts involving competitive oxidation and carburization during CO2 hydrogenation[J]. Sci Adv,2022,8(5):eabm3629. doi: 10.1126/sciadv.abm3629
  • 加载中
图(7)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  0
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-28
  • 录用日期:  2022-12-13
  • 修回日期:  2022-12-11
  • 网络出版日期:  2023-01-10

目录

    /

    返回文章
    返回